1 resultado para Low vision
em Boston University Digital Common
Resumo:
A neural network model of 3-D visual perception and figure-ground separation by visual cortex is introduced. The theory provides a unified explanation of how a 2-D image may generate a 3-D percept; how figures pop-out from cluttered backgrounds; how spatially sparse disparity cues can generate continuous surface representations at different perceived depths; how representations of occluded regions can be completed and recognized without usually being seen; how occluded regions can sometimes be seen during percepts of transparency; how high spatial frequency parts of an image may appear closer than low spatial frequency parts; how sharp targets are detected better against a figure and blurred targets are detector better against a background; how low spatial frequency parts of an image may be fused while high spatial frequency parts are rivalrous; how sparse blue cones can generate vivid blue surface percepts; how 3-D neon color spreading, visual phantoms, and tissue contrast percepts are generated; how conjunctions of color-and-depth may rapidly pop-out during visual search. These explanations arise derived from an ecological analysis of how monocularly viewed parts of an image inherit the appropriate depth from contiguous binocularly viewed parts, as during DaVinci stereopsis. The model predicts the functional role and ordering of multiple interactions within and between the two parvocellular processing streams that join LGN to prestriate area V4. Interactions from cells representing larger scales and disparities to cells representing smaller scales and disparities are of particular importance.