8 resultados para Inference module
em Boston University Digital Common
Resumo:
Handshape is a key articulatory parameter in sign language, and thus handshape recognition from signing video is essential for sign recognition and retrieval. Handshape transitions within monomorphemic lexical signs (the largest class of signs in signed languages) are governed by phonological rules. For example, such transitions normally involve either closing or opening of the hand (i.e., to exclusively use either folding or unfolding of the palm and one or more fingers). Furthermore, akin to allophonic variations in spoken languages, both inter- and intra- signer variations in the production of specific handshapes are observed. We propose a Bayesian network formulation to exploit handshape co-occurrence constraints, also utilizing information about allophonic variations to aid in handshape recognition. We propose a fast non-rigid image alignment method to gain improved robustness to handshape appearance variations during computation of observation likelihoods in the Bayesian network. We evaluate our handshape recognition approach on a large dataset of monomorphemic lexical signs. We demonstrate that leveraging linguistic constraints on handshapes results in improved handshape recognition accuracy. As part of the overall project, we are collecting and preparing for dissemination a large corpus (three thousand signs from three native signers) of American Sign Language (ASL) video. The video have been annotated using SignStream® [Neidle et al.] with labels for linguistic information such as glosses, morphological properties and variations, and start/end handshapes associated with each ASL sign.
Resumo:
Wireless sensor networks have recently emerged as enablers of important applications such as environmental, chemical and nuclear sensing systems. Such applications have sophisticated spatial-temporal semantics that set them aside from traditional wireless networks. For example, the computation of temperature averaged over the sensor field must take into account local densities. This is crucial since otherwise the estimated average temperature can be biased by over-sampling areas where a lot more sensors exist. Thus, we envision that a fundamental service that a wireless sensor network should provide is that of estimating local densities. In this paper, we propose a lightweight probabilistic density inference protocol, we call DIP, which allows each sensor node to implicitly estimate its neighborhood size without the explicit exchange of node identifiers as in existing density discovery schemes. The theoretical basis of DIP is a probabilistic analysis which gives the relationship between the number of sensor nodes contending in the neighborhood of a node and the level of contention measured by that node. Extensive simulations confirm the premise of DIP: it can provide statistically reliable and accurate estimates of local density at a very low energy cost and constant running time. We demonstrate how applications could be built on top of our DIP-based service by computing density-unbiased statistics from estimated local densities.
Resumo:
The development and deployment of distributed network-aware applications and services over the Internet require the ability to compile and maintain a model of the underlying network resources with respect to (one or more) characteristic properties of interest. To be manageable, such models must be compact, and must enable a representation of properties along temporal, spatial, and measurement resolution dimensions. In this paper, we propose a general framework for the construction of such metric-induced models using end-to-end measurements. We instantiate our approach using one such property, packet loss rates, and present an analytical framework for the characterization of Internet loss topologies. From the perspective of a server the loss topology is a logical tree rooted at the server with clients at its leaves, in which edges represent lossy paths between a pair of internal network nodes. We show how end-to-end unicast packet probing techniques could b e used to (1) infer a loss topology and (2) identify the loss rates of links in an existing loss topology. Correct, efficient inference of loss topology information enables new techniques for aggregate congestion control, QoS admission control, connection scheduling and mirror site selection. We report on simulation, implementation, and Internet deployment results that show the effectiveness of our approach and its robustness in terms of its accuracy and convergence over a wide range of network conditions.
Resumo:
End-to-End differentiation between wireless and congestion loss can equip TCP control so it operates effectively in a hybrid wired/wireless environment. Our approach integrates two techniques: packet loss pairs (PLP) and Hidden Markov Modeling (HMM). A packet loss pair is formed by two back-to-back packets, where one packet is lost while the second packet is successfully received. The purpose is for the second packet to carry the state of the network path, namely the round trip time (RTT), at the time the other packet is lost. Under realistic conditions, PLP provides strong differentiation between congestion and wireless type of loss based on distinguishable RTT distributions. An HMM is then trained so observed RTTs can be mapped to model states that represent either congestion loss or wireless loss. Extensive simulations confirm the accuracy of our HMM-based technique in classifying the cause of a packet loss. We also show the superiority of our technique over the Vegas predictor, which was recently found to perform best and which exemplifies other existing loss labeling techniques.
Resumo:
Principality of typings is the property that for each typable term, there is a typing from which all other typings are obtained via some set of operations. Type inference is the problem of finding a typing for a given term, if possible. We define an intersection type system which has principal typings and types exactly the strongly normalizable λ-terms. More interestingly, every finite-rank restriction of this system (using Leivant's first notion of rank) has principal typings and also has decidable type inference. This is in contrast to System F where the finite rank restriction for every finite rank at 3 and above has neither principal typings nor decidable type inference. This is also in contrast to earlier presentations of intersection types where the status of these properties is not known for the finite-rank restrictions at 3 and above.Furthermore, the notion of principal typings for our system involves only one operation, substitution, rather than several operations (not all substitution-based) as in earlier presentations of principality for intersection types (of unrestricted rank). A unification-based type inference algorithm is presented using a new form of unification, β-unification.
Resumo:
We consider type systems that combine universal types, recursive types, and object types. We study type inference in these systems under a rank restriction, following Leivant's notion of rank. To motivate our work, we present several examples showing how our systems can be used to type programs encountered in practice. We show that type inference in the rank-k system is decidable for k ≤ 2 and undecidable for k ≥ 3. (Similar results based on different techniques are known to hold for System F, without recursive types and object types.) Our undecidability result is obtained by a reduction from a particular adaptation (which we call "regular") of the semi-unification problem and whose undecidability is, interestingly, obtained by methods totally different from those used in the case of standard (or finite) semi-unification.
Resumo:
Existing type systems for object calculi are based on invariant subtyping. Subtyping invariance is required for soundness of static typing in the presence of method overrides, but it is often in the way of the expressive power of the type system. Flexibility of static typing can be recovered in different ways: in first-order systems, by the adoption of object types with variance annotations, in second-order systems by resorting to Self types. Type inference is known to be P-complete for first-order systems of finite and recursive object types, and NP-complete for a restricted version of Self types. The complexity of type inference for systems with variance annotations is yet unknown. This paper presents a new object type system based on the notion of Split types, a form of object types where every method is assigned two types, namely, an update type and a select type. The subtyping relation that arises for Split types is variant and, as a result, subtyping can be performed both in width and in depth. The new type system generalizes all the existing first-order type systems for objects, including systems based on variance annotations. Interestingly, the additional expressive power does not affect the complexity of the type inference problem, as we show by presenting an O(n^3) inference algorithm.
Resumo:
In many networked applications, independent caching agents cooperate by servicing each other's miss streams, without revealing the operational details of the caching mechanisms they employ. Inference of such details could be instrumental for many other processes. For example, it could be used for optimized forwarding (or routing) of one's own miss stream (or content) to available proxy caches, or for making cache-aware resource management decisions. In this paper, we introduce the Cache Inference Problem (CIP) as that of inferring the characteristics of a caching agent, given the miss stream of that agent. While CIP is insolvable in its most general form, there are special cases of practical importance in which it is, including when the request stream follows an Independent Reference Model (IRM) with generalized power-law (GPL) demand distribution. To that end, we design two basic "litmus" tests that are able to detect LFU and LRU replacement policies, the effective size of the cache and of the object universe, and the skewness of the GPL demand for objects. Using extensive experiments under synthetic as well as real traces, we show that our methods infer such characteristics accurately and quite efficiently, and that they remain robust even when the IRM/GPL assumptions do not hold, and even when the underlying replacement policies are not "pure" LFU or LRU. We exemplify the value of our inference framework by considering example applications.