4 resultados para Hierarchical model

em Boston University Digital Common


Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present what we believe to be the first thorough characterization of live streaming media content delivered over the Internet. Our characterization of over five million requests spanning a 28-day period is done at three increasingly granular levels, corresponding to clients, sessions, and transfers. Our findings support two important conclusions. First, we show that the nature of interactions between users and objects is fundamentally different for live versus stored objects. Access to stored objects is user driven, whereas access to live objects is object driven. This reversal of active/passive roles of users and objects leads to interesting dualities. For instance, our analysis underscores a Zipf-like profile for user interest in a given object, which is to be contrasted to the classic Zipf-like popularity of objects for a given user. Also, our analysis reveals that transfer lengths are highly variable and that this variability is due to the stickiness of clients to a particular live object, as opposed to structural (size) properties of objects. Second, based on observations we make, we conjecture that the particular characteristics of live media access workloads are likely to be highly dependent on the nature of the live content being accessed. In our study, this dependence is clear from the strong temporal correlations we observed in the traces, which we attribute to the synchronizing impact of live content on access characteristics. Based on our analyses, we present a model for live media workload generation that incorporates many of our findings, and which we implement in GISMO [19].

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Most associative memory models perform one level mapping between predefined sets of input and output patterns1 and are unable to represent hierarchical knowledge. Complex AI systems allow hierarchical representation of concepts, but generally do not have learning capabilities. In this paper, a memory model is proposed which forms concept hierarchy by learning sample relations between concepts. All concepts are represented in a concept layer. Relations between a concept and its defining lower level concepts, are chunked as cognitive codes represented in a coding layer. By updating memory contents in the concept layer through code firing in the coding layer, the system is able to perform an important class of commonsense reasoning, namely recognition and inheritance.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents a self-organizing, real-time, hierarchical neural network model of sequential processing, and shows how it can be used to induce recognition codes corresponding to word categories and elementary grammatical structures. The model, first introduced in Mannes (1992), learns to recognize, store, and recall sequences of unitized patterns in a stable manner, either using short-term memory alone, or using long-term memory weights. Memory capacity is only limited by the number of nodes provided. Sequences are mapped to unitized patterns, making the model suitable for hierarchical operation. By using multiple modules arranged in a hierarchy and a simple mapping between output of lower levels and the input of higher levels, the induction of codes representing word category and simple phrase structures is an emergent property of the model. Simulation results are reported to illustrate this behavior.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper describes the design of a self~organizing, hierarchical neural network model of unsupervised serial learning. The model learns to recognize, store, and recall sequences of unitized patterns, using either short-term memory (STM) or both STM and long-term memory (LTM) mechanisms. Timing information is learned and recall {both from STM and from LTM) is performed with a learned rhythmical structure. The network, bearing similarities with ART (Carpenter & Grossberg 1987a), learns to map temporal sequences to unitized patterns, which makes it suitable for hierarchical operation. It is therefore capable of self-organizing codes for sequences of sequences. The capacity is only limited by the number of nodes provided. Selected simulation results are reported to illustrate system properties.