Self-Organizing Grammar Induction Using a Neural Network Model


Autoria(s): Mannes, Christian
Data(s)

14/11/2011

14/11/2011

01/03/1993

Resumo

This paper presents a self-organizing, real-time, hierarchical neural network model of sequential processing, and shows how it can be used to induce recognition codes corresponding to word categories and elementary grammatical structures. The model, first introduced in Mannes (1992), learns to recognize, store, and recall sequences of unitized patterns in a stable manner, either using short-term memory alone, or using long-term memory weights. Memory capacity is only limited by the number of nodes provided. Sequences are mapped to unitized patterns, making the model suitable for hierarchical operation. By using multiple modules arranged in a hierarchy and a simple mapping between output of lower levels and the input of higher levels, the induction of codes representing word category and simple phrase structures is an emergent property of the model. Simulation results are reported to illustrate this behavior.

National Science Foundation (IRI-9024877)

Identificador

http://hdl.handle.net/2144/2014

Idioma(s)

en_US

Publicador

Boston University Center for Adaptive Systems and Department of Cognitive and Neural Systems

Relação

BU CAS/CNS Technical Reports;CAS/CNS-TR-1993-037

Direitos

Copyright 1993 Boston University. Permission to copy without fee all or part of this material is granted provided that: 1. The copies are not made or distributed for direct commercial advantage; 2. the report title, author, document number, and release date appear, and notice is given that copying is by permission of BOSTON UNIVERSITY TRUSTEES. To copy otherwise, or to republish, requires a fee and / or special permission.

Boston University Trustees

Tipo

Technical Report