22 resultados para HIRFL-CSR

em Boston University Digital Common


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Routing protocols for ad-hoc networks assume that the nodes forming the network are either under a single authority, or else that they would be altruistically forwarding data for other nodes with no expectation of a return. These assumptions are unrealistic since in ad-hoc networks, nodes are likely to be autonomous and rational (selfish), and thus unwilling to help unless they have an incentive to do so. Providing such incentives is an important aspect that should be considered when designing ad-hoc routing protocols. In this paper, we propose a dynamic, decentralized routing protocol for ad-hoc networks that provides incentives in the form of payments to intermediate nodes used to forward data for others. In our Constrained Selfish Routing (CSR) protocol, game-theoretic approaches are used to calculate payments (incentives) that ensure both the truthfulness of participating nodes and the fairness of the CSR protocol. We show through simulations that CSR is an energy efficient protocol and that it provides lower communication overhead in the best and average cases compared to existing approaches.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Numerous problems exist that can be modeled as traffic through a network in which constraints exist to regulate flow. Vehicular road travel, computer networks, and cloud based resource distribution, among others all have natural representations in this manner. As these networks grow in size and/or complexity, analysis and certification of the safety invariants becomes increasingly costly. The NetSketch formalism introduces a lightweight verification framework that allows for greater scalability than traditional analysis methods. The NetSketch tool was developed to provide the power of this formalism in an easy to use and intuitive user interface.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A foundational issue underlying many overlay network applications ranging from routing to P2P file sharing is that of connectivity management, i.e., folding new arrivals into the existing mesh and re-wiring to cope with changing network conditions. Previous work has considered the problem from two perspectives: devising practical heuristics for specific applications designed to work well in real deployments, and providing abstractions for the underlying problem that are tractable to address via theoretical analyses, especially game-theoretic analysis. Our work unifies these two thrusts first by distilling insights gleaned from clean theoretical models, notably that under natural resource constraints, selfish players can select neighbors so as to efficiently reach near-equilibria that also provide high global performance. Using Egoist, a prototype overlay routing system we implemented on PlanetLab, we demonstrate that our neighbor selection primitives significantly outperform existing heuristics on a variety of performance metrics; that Egoist is competitive with an optimal, but unscalable full-mesh approach; and that it remains highly effective under significant churn. We also describe variants of Egoist's current design that would enable it to scale to overlays of much larger scale and allow it to cater effectively to applications, such as P2P file sharing in unstructured overlays, based on the use of primitives such as scoped-flooding rather than routing.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A foundational issue underlying many overlay network applications ranging from routing to P2P file sharing is that of connectivity management, i.e., folding new arrivals into an existing overlay, and re-wiring to cope with changing network conditions. Previous work has considered the problem from two perspectives: devising practical heuristics for specific applications designed to work well in real deployments, and providing abstractions for the underlying problem that are analytically tractable, especially via game-theoretic analysis. In this paper, we unify these two thrusts by using insights gleaned from novel, realistic theoretic models in the design of Egoist – a prototype overlay routing system that we implemented, deployed, and evaluated on PlanetLab. Using measurements on PlanetLab and trace-based simulations, we demonstrate that Egoist's neighbor selection primitives significantly outperform existing heuristics on a variety of performance metrics, including delay, available bandwidth, and node utilization. Moreover, we demonstrate that Egoist is competitive with an optimal, but unscalable full-mesh approach, remains highly effective under significant churn, is robust to cheating, and incurs minimal overhead. Finally, we discuss some of the potential benefits Egoist may offer to applications.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Wireless Intrusion Detection Systems (WIDS) monitor 802.11 wireless frames (Layer-2) in an attempt to detect misuse. What distinguishes a WIDS from a traditional Network IDS is the ability to utilize the broadcast nature of the medium to reconstruct the physical location of the offending party, as opposed to its possibly spoofed (MAC addresses) identity in cyber space. Traditional Wireless Network Security Systems are still heavily anchored in the digital plane of "cyber space" and hence cannot be used reliably or effectively to derive the physical identity of an intruder in order to prevent further malicious wireless broadcasts, for example by escorting an intruder off the premises based on physical evidence. In this paper, we argue that Embedded Sensor Networks could be used effectively to bridge the gap between digital and physical security planes, and thus could be leveraged to provide reciprocal benefit to surveillance and security tasks on both planes. Toward that end, we present our recent experience integrating wireless networking security services into the SNBENCH (Sensor Network workBench). The SNBENCH provides an extensible framework that enables the rapid development and automated deployment of Sensor Network applications on a shared, embedded sensing and actuation infrastructure. The SNBENCH's extensible architecture allows an engineer to quickly integrate new sensing and response capabilities into the SNBENCH framework, while high-level languages and compilers allow novice SN programmers to compose SN service logic, unaware of the lower-level implementation details of tools on which their services rely. In this paper we convey the simplicity of the service composition through concrete examples that illustrate the power and potential of Wireless Security Services that span both the physical and digital plane.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Commonly, research work in routing for delay tolerant networks (DTN) assumes that node encounters are predestined, in the sense that they are the result of unknown, exogenous processes that control the mobility of these nodes. In this paper, we argue that for many applications such an assumption is too restrictive: while the spatio-temporal coordinates of the start and end points of a node's journey are determined by exogenous processes, the specific path that a node may take in space-time, and hence the set of nodes it may encounter could be controlled in such a way so as to improve the performance of DTN routing. To that end, we consider a setting in which each mobile node is governed by a schedule consisting of a ist of locations that the node must visit at particular times. Typically, such schedules exhibit some level of slack, which could be leveraged for DTN message delivery purposes. We define the Mobility Coordination Problem (MCP) for DTNs as follows: Given a set of nodes, each with its own schedule, and a set of messages to be exchanged between these nodes, devise a set of node encounters that minimize message delivery delays while satisfying all node schedules. The MCP for DTNs is general enough that it allows us to model and evaluate some of the existing DTN schemes, including data mules and message ferries. In this paper, we show that MCP for DTNs is NP-hard and propose two detour-based approaches to solve the problem. The first (DMD) is a centralized heuristic that leverages knowledge of the message workload to suggest specific detours to optimize message delivery. The second (DNE) is a distributed heuristic that is oblivious to the message workload, and which selects detours so as to maximize node encounters. We evaluate the performance of these detour-based approaches using extensive simulations based on synthetic workloads as well as real schedules obtained from taxi logs in a major metropolitan area. Our evaluation shows that our centralized, workload-aware DMD approach yields the best performance, in terms of message delay and delivery success ratio, and that our distributed, workload-oblivious DNE approach yields favorable performance when compared to approaches that require the use of data mules and message ferries.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

snBench is a platform on which novice users compose and deploy distributed Sense and Respond programs for simultaneous execution on a shared, distributed infrastructure. It is a natural imperative that we have the ability to (1) verify the safety/correctness of newly submitted tasks and (2) derive the resource requirements for these tasks such that correct allocation may occur. To achieve these goals we have established a multi-dimensional sized type system for our functional-style Domain Specific Language (DSL) called Sensor Task Execution Plan (STEP). In such a type system data types are annotated with a vector of size attributes (e.g., upper and lower size bounds). Tracking multiple size aspects proves essential in a system in which Images are manipulated as a first class data type, as image manipulation functions may have specific minimum and/or maximum resolution restrictions on the input they can correctly process. Through static analysis of STEP instances we not only verify basic type safety and establish upper computational resource bounds (i.e., time and space), but we also derive and solve data and resource sizing constraints (e.g., Image resolution, camera capabilities) from the implicit constraints embedded in program instances. In fact, the static methods presented here have benefit beyond their application to Image data, and may be extended to other data types that require tracking multiple dimensions (e.g., image "quality", video frame-rate or aspect ratio, audio sampling rate). In this paper we present the syntax and semantics of our functional language, our type system that builds costs and resource/data constraints, and (through both formalism and specific details of our implementation) provide concrete examples of how the constraints and sizing information are used in practice.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The advent of virtualization and cloud computing technologies necessitates the development of effective mechanisms for the estimation and reservation of resources needed by content providers to deliver large numbers of video-on-demand (VOD) streams through the cloud. Unfortunately, capacity planning for the QoS-constrained delivery of a large number of VOD streams is inherently difficult as VBR encoding schemes exhibit significant bandwidth variability. In this paper, we present a novel resource management scheme to make such allocation decisions using a mixture of per-stream reservations and an aggregate reservation, shared across all streams to accommodate peak demands. The shared reservation provides capacity slack that enables statistical multiplexing of peak rates, while assuring analytically bounded frame-drop probabilities, which can be adjusted by trading off buffer space (and consequently delay) and bandwidth. Our two-tiered bandwidth allocation scheme enables the delivery of any set of streams with less bandwidth (or equivalently with higher link utilization) than state-of-the-art deterministic smoothing approaches. The algorithm underlying our proposed frame-work uses three per-stream parameters and is linear in the number of servers, making it particularly well suited for use in an on-line setting. We present results from extensive trace-driven simulations, which confirm the efficiency of our scheme especially for small buffer sizes and delay bounds, and which underscore the significant realizable bandwidth savings, typically yielding losses that are an order of magnitude or more below our analytically derived bounds.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We consider a Delay Tolerant Network (DTN) whose users (nodes) are connected by an underlying Mobile Ad hoc Network (MANET) substrate. Users can declaratively express high-level policy constraints on how "content" should be routed. For example, content may be diverted through an intermediary DTN node for the purposes of preprocessing, authentication, etc. To support such capability, we implement Predicate Routing [7] where high-level constraints of DTN nodes are mapped into low-level routing predicates at the MANET level. Our testbed uses a Linux system architecture and leverages User Mode Linux [2] to emulate every node running a DTN Reference Implementation code [5]. In our initial prototype, we use the On Demand Distance Vector (AODV) MANET routing protocol. We use the network simulator ns-2 (ns-emulation version) to simulate the mobility and wireless connectivity of both DTN and MANET nodes. We show preliminary throughput results showing the efficient and correct operation of propagating routing predicates, and as a side effect, the performance benefit of content re-routing that dynamically (on-demand) breaks the underlying end-to-end TCP connection into shorter-length TCP connections.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A foundational issue underlying many overlay network applications ranging from routing to peer-to-peer file sharing is that of connectivity management, i.e., folding new arrivals into an existing overlay, and rewiring to cope with changing network conditions. Previous work has considered the problem from two perspectives: devising practical heuristics for specific applications designed to work well in real deployments, and providing abstractions for the underlying problem that are analytically tractable, especially via game-theoretic analysis. In this paper, we unify these two thrusts by using insights gleaned from novel, realistic theoretic models in the design of Egoist – a distributed overlay routing system that we implemented, deployed, and evaluated on PlanetLab. Using extensive measurements of paths between nodes, we demonstrate that Egoist’s neighbor selection primitives significantly outperform existing heuristics on a variety of performance metrics, including delay, available bandwidth, and node utilization. Moreover, we demonstrate that Egoist is competitive with an optimal, but unscalable full-mesh approach, remains highly effective under significant churn, is robust to cheating, and incurs minimal overhead. Finally, we use a multiplayer peer-to-peer game to demonstrate the value of Egoist to end-user applications. This technical report supersedes BUCS-TR-2007-013.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This position paper outlines a new network architecture, i.e., a style of construction that identifies the objects and how they relate. We do not specify particular protocol implementations or specific interfaces and policies. After all, it should be possible to change protocols in an architecture without changing the architecture. Rather we outline the repeating patterns and structures, and how the proposed model would cope with the challenges faced by today's Internet (and that of the future). Our new architecture is based on the following principle: Application processes communicate via a distributed inter-process communication (IPC) facility. The application processes that make up this facility provide a protocol that implements an IPC mechanism, and a protocol for managing distributed IPC (routing, security and other management tasks). Existing implementation strategies, algorithms, and protocols can be cast and used within our proposed new structure.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper we introduce a theory of policy routing dynamics based on fundamental axioms of routing update mechanisms. We develop a dynamic policy routing model (DPR) that extends the static formalism of the stable paths problem (introduced by Griffin et al.) with discrete synchronous time. DPR captures the propagation of path changes in any dynamic network irrespective of its time-varying topology. We introduce several novel structures such as causation chains, dispute fences and policy digraphs that model different aspects of routing dynamics and provide insight into how these dynamics manifest in a network. We exercise the practicality of the theoretical foundation provided by DPR with two fundamental problems: routing dynamics minimization and policy conflict detection. The dynamics minimization problem utilizes policy digraphs, that capture the dependencies in routing policies irrespective of underlying topology dynamics, to solve a graph optimization problem. This optimization problem explicitly minimizes the number of routing update messages in a dynamic network by optimally changing the path preferences of a minimal subset of nodes. The conflict detection problem, on the other hand, utilizes a theoretical result of DPR where the root cause of a causation cycle (i.e., cycle of routing update messages) can be precisely inferred as either a transient route flap or a dispute wheel (i.e., policy conflict). Using this result we develop SafetyPulse, a token-based distributed algorithm to detect policy conflicts in a dynamic network. SafetyPulse is privacy preserving, computationally efficient, and provably correct.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We introduce Collocation Games as the basis of a general framework for modeling, analyzing, and facilitating the interactions between the various stakeholders in distributed systems in general, and in cloud computing environments in particular. Cloud computing enables fixed-capacity (processing, communication, and storage) resources to be offered by infrastructure providers as commodities for sale at a fixed cost in an open marketplace to independent, rational parties (players) interested in setting up their own applications over the Internet. Virtualization technologies enable the partitioning of such fixed-capacity resources so as to allow each player to dynamically acquire appropriate fractions of the resources for unencumbered use. In such a paradigm, the resource management problem reduces to that of partitioning the entire set of applications (players) into subsets, each of which is assigned to fixed-capacity cloud resources. If the infrastructure and the various applications are under a single administrative domain, this partitioning reduces to an optimization problem whose objective is to minimize the overall deployment cost. In a marketplace, in which the infrastructure provider is interested in maximizing its own profit, and in which each player is interested in minimizing its own cost, it should be evident that a global optimization is precisely the wrong framework. Rather, in this paper we use a game-theoretic framework in which the assignment of players to fixed-capacity resources is the outcome of a strategic "Collocation Game". Although we show that determining the existence of an equilibrium for collocation games in general is NP-hard, we present a number of simplified, practically-motivated variants of the collocation game for which we establish convergence to a Nash Equilibrium, and for which we derive convergence and price of anarchy bounds. In addition to these analytical results, we present an experimental evaluation of implementations of some of these variants for cloud infrastructures consisting of a collection of multidimensional resources of homogeneous or heterogeneous capacities. Experimental results using trace-driven simulations and synthetically generated datasets corroborate our analytical results and also illustrate how collocation games offer a feasible distributed resource management alternative for autonomic/self-organizing systems, in which the adoption of a global optimization approach (centralized or distributed) would be neither practical nor justifiable.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The initial phase in a content distribution (file sharing) scenario is a delicate phase due to the lack of global knowledge and the dynamics of the overlay. An unwise distribution of the pieces in this phase can cause delays in reaching steady state, thus increasing file download times. We devise a scheduling algorithm at the seed (source peer with full content), based on a proportional fair approach, and we implement it on a real file sharing client [1]. In dynamic overlays, our solution improves up to 25% the average downloading time of a standard protocol ala BitTorrent.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We consider a Delay Tolerant Network (DTN) whose users (nodes) are connected by an underlying Mobile Ad hoc Network (MANET) substrate. Users can declaratively express high-level policy constraints on how “content” should be routed. For example, content can be directed through an intermediary DTN node for the purposes of preprocessing, authentication, etc., or content from a malicious MANET node can be dropped. To support such content routing at the DTN level, we implement Predicate Routing [1] where high-level constraints of DTN nodes are mapped into low-level routing predicates within the MANET nodes. Our testbed [2] uses a Linux system architecture with User Mode Linux [3] to emulate every DTN node with a DTN Reference Implementation code [4]. In our initial architecture prototype, we use the On Demand Distance Vector (AODV) routing protocol at the MANET level. We use the network simulator ns-2 (ns-emulation version) to simulate the wireless connectivity of both DTN and MANET nodes. Preliminary results show the efficient and correct operation of propagating routing predicates. For the application of content re-routing through an intermediary, as a side effect, results demonstrate the performance benefit of content re-routing that dynamically (on-demand) breaks the underlying end-to-end TCP connections into shorter-length TCP connections.