4 resultados para GUIDE-O (Information retrieval system)

em Boston University Digital Common


Relevância:

100.00% 100.00%

Publicador:

Resumo:

DSpace is an open source software platform that enables organizations to: - Capture and describe digital material using a submission workflow module, or a variety of programmatic ingest options - Distribute an organization's digital assets over the web through a search and retrieval system - Preserve digital assets over the long term This system documentation includes a functional overview of the system, which is a good introduction to the capabilities of the system, and should be readable by nontechnical personnel. Everyone should read this section first because it introduces some terminology used throughout the rest of the documentation. For people actually running a DSpace service, there is an installation guide, and sections on configuration and the directory structure. Note that as of DSpace 1.2, the administration user interface guide is now on-line help available from within the DSpace system. Finally, for those interested in the details of how DSpace works, and those potentially interested in modifying the code for their own purposes, there is a detailed architecture and design section.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mapping novel terrain from sparse, complex data often requires the resolution of conflicting information from sensors working at different times, locations, and scales, and from experts with different goals and situations. Information fusion methods help resolve inconsistencies in order to distinguish correct from incorrect answers, as when evidence variously suggests that an object's class is car, truck, or airplane. The methods developed here consider a complementary problem, supposing that information from sensors and experts is reliable though inconsistent, as when evidence suggests that an objects class is car, vehicle, or man-made. Underlying relationships among objects are assumed to be unknown to the automated system of the human user. The ARTMAP information fusion system uses distributed code representations that exploit the neural network's capacity for one-to-many learning in order to produce self-organizing expert systems that discover hierarchial knowledge structures. The system infers multi-level relationships among groups of output classes, without any supervised labeling of these relationships. The procedure is illustrated with two image examples.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Classifying novel terrain or objects front sparse, complex data may require the resolution of conflicting information from sensors working at different times, locations, and scales, and from sources with different goals and situations. Information fusion methods can help resolve inconsistencies, as when evidence variously suggests that an object's class is car, truck, or airplane. The methods described here consider a complementary problem, supposing that information from sensors and experts is reliable though inconsistent, as when evidence suggests that an object's class is car, vehicle, and man-made. Underlying relationships among objects are assumed to be unknown to the automated system or the human user. The ARTMAP information fusion system used distributed code representations that exploit the neural network's capacity for one-to-many learning in order to produce self-organizing expert systems that discover hierarchical knowledge structures. The system infers multi-level relationships among groups of output classes, without any supervised labeling of these relationships.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Classifying novel terrain or objects from sparse, complex data may require the resolution of conflicting information from sensors woring at different times, locations, and scales, and from sources with different goals and situations. Information fusion methods can help resolve inconsistencies, as when eveidence variously suggests that and object's class is car, truck, or airplane. The methods described her address a complementary problem, supposing that information from sensors and experts is reliable though inconsistent, as when evidence suggests that an object's class is car, vehicle, and man-made. Underlying relationships among classes are assumed to be unknown to the autonomated system or the human user. The ARTMAP information fusion system uses distributed code representations that exploit the neural network's capacity for one-to-many learning in order to produce self-organizing expert systems that discover hierachical knowlege structures. The fusion system infers multi-level relationships among groups of output classes, without any supervised labeling of these relationships. The procedure is illustrated with two image examples, but is not limited to image domain.