4 resultados para Fully automated

em Boston University Digital Common


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In many multi-camera vision systems the effect of camera locations on the task-specific quality of service is ignored. Researchers in Computational Geometry have proposed elegant solutions for some sensor location problem classes. Unfortunately, these solutions utilize unrealistic assumptions about the cameras' capabilities that make these algorithms unsuitable for many real-world computer vision applications: unlimited field of view, infinite depth of field, and/or infinite servo precision and speed. In this paper, the general camera placement problem is first defined with assumptions that are more consistent with the capabilities of real-world cameras. The region to be observed by cameras may be volumetric, static or dynamic, and may include holes that are caused, for instance, by columns or furniture in a room that can occlude potential camera views. A subclass of this general problem can be formulated in terms of planar regions that are typical of building floorplans. Given a floorplan to be observed, the problem is then to efficiently compute a camera layout such that certain task-specific constraints are met. A solution to this problem is obtained via binary optimization over a discrete problem space. In preliminary experiments the performance of the resulting system is demonstrated with different real floorplans.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In many multi-camera vision systems the effect of camera locations on the task-specific quality of service is ignored. Researchers in Computational Geometry have proposed elegant solutions for some sensor location problem classes. Unfortunately, these solutions utilize unrealistic assumptions about the cameras' capabilities that make these algorithms unsuitable for many real-world computer vision applications: unlimited field of view, infinite depth of field, and/or infinite servo precision and speed. In this paper, the general camera placement problem is first defined with assumptions that are more consistent with the capabilities of real-world cameras. The region to be observed by cameras may be volumetric, static or dynamic, and may include holes that are caused, for instance, by columns or furniture in a room that can occlude potential camera views. A subclass of this general problem can be formulated in terms of planar regions that are typical of building floorplans. Given a floorplan to be observed, the problem is then to efficiently compute a camera layout such that certain task-specific constraints are met. A solution to this problem is obtained via binary optimization over a discrete problem space. In experiments the performance of the resulting system is demonstrated with different real floorplans.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In [previous papers] we presented the design, specification and proof of correctness of a fully distributed location management scheme for PCS networks and argued that fully replicating location information is both appropriate and efficient for small PCS networks. In this paper, we analyze the performance of this scheme. Then, we extend the scheme in a hierarchical environment so as to scale to large PCS networks. Through extensive numerical results, we show the superiority of our scheme compared to the current IS-41 standard.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ongoing research at Boston University has produced computational models of biological vision and learning that embody a growing corpus of scientific data and predictions. Vision models perform long-range grouping and figure/ground segmentation, and memory models create attentionally controlled recognition codes that intrinsically cornbine botton-up activation and top-down learned expectations. These two streams of research form the foundation of novel dynamically integrated systems for image understanding. Simulations using multispectral images illustrate road completion across occlusions in a cluttered scene and information fusion from incorrect labels that are simultaneously inconsistent and correct. The CNS Vision and Technology Labs (cns.bu.edulvisionlab and cns.bu.edu/techlab) are further integrating science and technology through analysis, testing, and development of cognitive and neural models for large-scale applications, complemented by software specification and code distribution.