4 resultados para Caloric Restriction

em Boston University Digital Common


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The ML programming language restricts type polymorphism to occur only in the "let-in" construct and requires every occurrence of a formal parameter of a function (a lambda abstraction) to have the same type. Milner in 1978 refers to this restriction (which was adopted to help ML achieve automatic type inference) as a serious limitation. We show that this restriction can be relaxed enough to allow universal polymorphic abstraction without losing automatic type inference. This extension is equivalent to the rank-2 fragment of system F. We precisely characterize the additional program phrases (lambda terms) that can be typed with this extension and we describe typing anomalies both before and after the extension. We discuss how macros may be used to gain some of the power of rank-3 types without losing automatic type inference. We also discuss user-interface problems in how to inform the programmer of the possible types a program phrase may have.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Principality of typings is the property that for each typable term, there is a typing from which all other typings are obtained via some set of operations. Type inference is the problem of finding a typing for a given term, if possible. We define an intersection type system which has principal typings and types exactly the strongly normalizable λ-terms. More interestingly, every finite-rank restriction of this system (using Leivant's first notion of rank) has principal typings and also has decidable type inference. This is in contrast to System F where the finite rank restriction for every finite rank at 3 and above has neither principal typings nor decidable type inference. This is also in contrast to earlier presentations of intersection types where the status of these properties is not known for the finite-rank restrictions at 3 and above.Furthermore, the notion of principal typings for our system involves only one operation, substitution, rather than several operations (not all substitution-based) as in earlier presentations of principality for intersection types (of unrestricted rank). A unification-based type inference algorithm is presented using a new form of unification, β-unification.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We consider type systems that combine universal types, recursive types, and object types. We study type inference in these systems under a rank restriction, following Leivant's notion of rank. To motivate our work, we present several examples showing how our systems can be used to type programs encountered in practice. We show that type inference in the rank-k system is decidable for k ≤ 2 and undecidable for k ≥ 3. (Similar results based on different techniques are known to hold for System F, without recursive types and object types.) Our undecidability result is obtained by a reduction from a particular adaptation (which we call "regular") of the semi-unification problem and whose undecidability is, interestingly, obtained by methods totally different from those used in the case of standard (or finite) semi-unification.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Weak references are references that do not prevent the object they point to from being garbage collected. Most realistic languages, including Java, SML/NJ, and OCaml to name a few, have some facility for programming with weak references. Weak references are used in implementing idioms like memoizing functions and hash-consing in order to avoid potential memory leaks. However, the semantics of weak references in many languages are not clearly specified. Without a formal semantics for weak references it becomes impossible to prove the correctness of implementations making use of this feature. Previous work by Hallett and Kfoury extends λgc, a language for modeling garbage collection, to λweak, a similar language with weak references. Using this previously formalized semantics for weak references, we consider two issues related to well-behavedness of programs. Firstly, we provide a new, simpler proof of the well-behavedness of the syntactically restricted fragment of λweak defined previously. Secondly, we give a natural semantic criterion for well-behavedness much broader than the syntactic restriction, which is useful as principle for programming with weak references. Furthermore we extend the result, proved in previously of λgc, which allows one to use type-inference to collect some reachable objects that are never used. We prove that this result holds of our language, and we extend this result to allow the collection of weakly-referenced reachable garbage without incurring the computational overhead sometimes associated with collecting weak bindings (e.g. the need to recompute a memoized function). Lastly we use extend the semantic framework to model the key/value weak references found in Haskell and we prove the Haskell is semantics equivalent to a simpler semantics due to the lack of side-effects in our language.