2 resultados para Benefit-sharing

em Boston University Digital Common


Relevância:

20.00% 20.00%

Publicador:

Resumo:

By utilizing structure sharing among its parse trees, a GB parser can increase its efficiency dramatically. Using a GB parser which has as its phrase structure recovery component an implementation of Tomita's algorithm (as described in [Tom86]), we investigate how a GB parser can preserve the structure sharing output by Tomita's algorithm. In this report, we discuss the implications of using Tomita's algorithm in GB parsing, and we give some details of the structuresharing parser currently under construction. We also discuss a method of parallelizing a GB parser, and relate it to the existing literature on parallel GB parsing. Our approach to preserving sharing within a shared-packed forest is applicable not only to GB parsing, but anytime we want to preserve structure sharing in a parse forest in the presence of features.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A foundational issue underlying many overlay network applications ranging from routing to P2P file sharing is that of connectivity management, i.e., folding new arrivals into the existing mesh and re-wiring to cope with changing network conditions. Previous work has considered the problem from two perspectives: devising practical heuristics for specific applications designed to work well in real deployments, and providing abstractions for the underlying problem that are tractable to address via theoretical analyses, especially game-theoretic analysis. Our work unifies these two thrusts first by distilling insights gleaned from clean theoretical models, notably that under natural resource constraints, selfish players can select neighbors so as to efficiently reach near-equilibria that also provide high global performance. Using Egoist, a prototype overlay routing system we implemented on PlanetLab, we demonstrate that our neighbor selection primitives significantly outperform existing heuristics on a variety of performance metrics; that Egoist is competitive with an optimal, but unscalable full-mesh approach; and that it remains highly effective under significant churn. We also describe variants of Egoist's current design that would enable it to scale to overlays of much larger scale and allow it to cater effectively to applications, such as P2P file sharing in unstructured overlays, based on the use of primitives such as scoped-flooding rather than routing.