4 resultados para 60´s generation
em Boston University Digital Common
Resumo:
We study a resistively shunted semiconductor superlattice subject to a high-frequency electric field. Using a balance equation approach that incorporates the influence of the electric circuit, we determine numerically a range of amplitude and frequency of the ac field for which a dc bias and current are generated spontaneously and show that this region is likely accessible to current experiments. Our simulations reveal that the Bloch frequency corresponding to the spontaneous dc bias is approximately an integer multiple of the ac field frequency.
Resumo:
We consider the spontaneous creation of a dc voltage across a strongly coupled semiconductor superlattice subjected to THz radiation. We show that the dc voltage may be approximately proportional either to an integer or to a half- integer multiple of the frequency of the applied ac field, depending on the ratio of the characteristic scattering rates of conducting electrons. For the case of an ac field frequency less than the characteristic scattering rates, we demonstrate the generation of an unquantized dc voltage.
Resumo:
Effective engineering of the Internet is predicated upon a detailed understanding of issues such as the large-scale structure of its underlying physical topology, the manner in which it evolves over time, and the way in which its constituent components contribute to its overall function. Unfortunately, developing a deep understanding of these issues has proven to be a challenging task, since it in turn involves solving difficult problems such as mapping the actual topology, characterizing it, and developing models that capture its emergent behavior. Consequently, even though there are a number of topology models, it is an open question as to how representative the topologies they generate are of the actual Internet. Our goal is to produce a topology generation framework which improves the state of the art and is based on design principles which include representativeness, inclusiveness, and interoperability. Representativeness leads to synthetic topologies that accurately reflect many aspects of the actual Internet topology (e.g. hierarchical structure, degree distribution, etc.). Inclusiveness combines the strengths of as many generation models as possible in a single generation tool. Interoperability provides interfaces to widely-used simulation and visualization applications such as ns and SSF. We call such a tool a universal topology generator. In this paper we discuss the design, implementation and usage of the BRITE universal topology generation tool that we have built. We also describe the BRITE Analysis Engine, BRIANA, which is an independent piece of software designed and built upon BRITE design goals of flexibility and extensibility. The purpose of BRIANA is to act as a repository of analysis routines along with a user–friendly interface that allows its use on different topology formats.
Resumo:
We present a thorough characterization of the access patterns in blogspace, which comprises a rich interconnected web of blog postings and comments by an increasingly prominent user community that collectively define what has become known as the blogosphere. Our characterization of over 35 million read, write, and management requests spanning a 28-day period is done at three different levels. The user view characterizes how individual users interact with blogosphere objects (blogs); the object view characterizes how individual blogs are accessed; the server view characterizes the aggregate access patterns of all users to all blogs. The more-interactive nature of the blogosphere leads to interesting traffic and communication patterns, which are different from those observed for traditional web content. We identify and characterize novel features of the blogosphere workload, and we show the similarities and differences between typical web server workloads and blogosphere server workloads. Finally, based on our main characterization results, we build a new synthetic blogosphere workload generator called GBLOT, which aims at mimicking closely a stream of requests originating from a population of blog users. Given the increasing share of blogspace traffic, realistic workload models and tools are important for capacity planning and traffic engineering purposes.