9 resultados para 2006-07-BS

em Boston University Digital Common


Relevância:

80.00% 80.00%

Publicador:

Resumo:

In an outsourced database system the data owner publishes information through a number of remote, untrusted servers with the goal of enabling clients to access and query the data more efficiently. As clients cannot trust servers, query authentication is an essential component in any outsourced database system. Clients should be given the capability to verify that the answers provided by the servers are correct with respect to the actual data published by the owner. While existing work provides authentication techniques for selection and projection queries, there is a lack of techniques for authenticating aggregation queries. This article introduces the first known authenticated index structures for aggregation queries. First, we design an index that features good performance characteristics for static environments, where few or no updates occur to the data. Then, we extend these ideas and propose more involved structures for the dynamic case, where the database owner is allowed to update the data arbitrarily. Our structures feature excellent average case performance for authenticating queries with multiple aggregate attributes and multiple selection predicates. We also implement working prototypes of the proposed techniques and experimentally validate the correctness of our ideas.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

It is useful in systems that must support multiple applications with various temporal requirements to allow application-specific policies to manage resources accordingly. However, there is a tension between this goal and the desire to control and police possibly malicious programs. The Java-based Sensor Execution Environment (SXE) in snBench presents a situation where such considerations add value to the system. Multiple applications can be run by multiple users with varied temporal requirements, some Real-Time and others best effort. This paper outlines and documents an implementation of a hierarchical and configurable scheduling system with which different applications can be executed using application-specific scheduling policies. Concurrently the system administrator can define fairness policies between applications that are imposed upon the system. Additionally, to ensure forward progress of system execution in the face of malicious or malformed user programs, an infrastructure for execution using multiple threads is described.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The SNBENCH is a general-purpose programming environment and run-time system targeted towards a variety of Sensor applications such as environmental sensing, location sensing, video sensing, etc. In its current structure, the run-time engine of the SNBENCH namely, the Sensorium Execution Environment (SXE) processes the entities of execution in a single thread of operation. In order to effectively support applications that are time-sensitive and need priority, it is imperative to process the tasks discretely so that specific policies can be applied at a much granular level. The goal of this project was to modify the SXE to enable efficient use of system resources by way of multi-tasking the individual components. Additionally, the transformed SXE offers the ability to classify and employ different schemes of processing to the individual tasks.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The purpose of this project is the creation of a graphical "programming" interface for a sensor network tasking language called STEP. The graphical interface allows the user to specify a program execution graphically from an extensible pallet of functionalities and save the results as a properly formatted STEP file. Moreover, the software is able to load a file in STEP format and convert it into the corresponding graphical representation. During both phases a type-checker is running on the background to ensure that both the graphical representation and the STEP file are syntactically correct. This project has been motivated by the Sensorium project at Boston University. In this technical report we present the basic features of the software, the process that has been followed during the design and implementation. Finally, we describe the approach used to test and validate our software.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In many networked applications, independent caching agents cooperate by servicing each other's miss streams, without revealing the operational details of the caching mechanisms they employ. Inference of such details could be instrumental for many other processes. For example, it could be used for optimized forwarding (or routing) of one's own miss stream (or content) to available proxy caches, or for making cache-aware resource management decisions. In this paper, we introduce the Cache Inference Problem (CIP) as that of inferring the characteristics of a caching agent, given the miss stream of that agent. While CIP is insolvable in its most general form, there are special cases of practical importance in which it is, including when the request stream follows an Independent Reference Model (IRM) with generalized power-law (GPL) demand distribution. To that end, we design two basic "litmus" tests that are able to detect LFU and LRU replacement policies, the effective size of the cache and of the object universe, and the skewness of the GPL demand for objects. Using extensive experiments under synthetic as well as real traces, we show that our methods infer such characteristics accurately and quite efficiently, and that they remain robust even when the IRM/GPL assumptions do not hold, and even when the underlying replacement policies are not "pure" LFU or LRU. We exemplify the value of our inference framework by considering example applications.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The effectiveness of service provisioning in largescale networks is highly dependent on the number and location of service facilities deployed at various hosts. The classical, centralized approach to determining the latter would amount to formulating and solving the uncapacitated k-median (UKM) problem (if the requested number of facilities is fixed), or the uncapacitated facility location (UFL) problem (if the number of facilities is also to be optimized). Clearly, such centralized approaches require knowledge of global topological and demand information, and thus do not scale and are not practical for large networks. The key question posed and answered in this paper is the following: "How can we determine in a distributed and scalable manner the number and location of service facilities?" We propose an innovative approach in which topology and demand information is limited to neighborhoods, or balls of small radius around selected facilities, whereas demand information is captured implicitly for the remaining (remote) clients outside these neighborhoods, by mapping them to clients on the edge of the neighborhood; the ball radius regulates the trade-off between scalability and performance. We develop a scalable, distributed approach that answers our key question through an iterative reoptimization of the location and the number of facilities within such balls. We show that even for small values of the radius (1 or 2), our distributed approach achieves performance under various synthetic and real Internet topologies that is comparable to that of optimal, centralized approaches requiring full topology and demand information.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In a typical overlay network for routing or content sharing, each node must select a fixed number of immediate overlay neighbors for routing traffic or content queries. A selfish node entering such a network would select neighbors so as to minimize the weighted sum of expected access costs to all its destinations. Previous work on selfish neighbor selection has built intuition with simple models where edges are undirected, access costs are modeled by hop-counts, and nodes have potentially unbounded degrees. However, in practice, important constraints not captured by these models lead to richer games with substantively and fundamentally different outcomes. Our work models neighbor selection as a game involving directed links, constraints on the number of allowed neighbors, and costs reflecting both network latency and node preference. We express a node's "best response" wiring strategy as a k-median problem on asymmetric distance, and use this formulation to obtain pure Nash equilibria. We experimentally examine the properties of such stable wirings on synthetic topologies, as well as on real topologies and maps constructed from PlanetLab and AS-level Internet measurements. Our results indicate that selfish nodes can reap substantial performance benefits when connecting to overlay networks composed of non-selfish nodes. On the other hand, in overlays that are dominated by selfish nodes, the resulting stable wirings are optimized to such great extent that even non-selfish newcomers can extract near-optimal performance through naive wiring strategies.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Overlay networks have become popular in recent times for content distribution and end-system multicasting of media streams. In the latter case, the motivation is based on the lack of widespread deployment of IP multicast and the ability to perform end-host processing. However, constructing routes between various end-hosts, so that data can be streamed from content publishers to many thousands of subscribers, each having their own QoS constraints, is still a challenging problem. First, any routes between end-hosts using trees built on top of overlay networks can increase stress on the underlying physical network, due to multiple instances of the same data traversing a given physical link. Second, because overlay routes between end-hosts may traverse physical network links more than once, they increase the end-to-end latency compared to IP-level routing. Third, algorithms for constructing efficient, large-scale trees that reduce link stress and latency are typically more complex. This paper therefore compares various methods to construct multicast trees between end-systems, that vary in terms of implementation costs and their ability to support per-subscriber QoS constraints. We describe several algorithms that make trade-offs between algorithmic complexity, physical link stress and latency. While no algorithm is best in all three cases we show how it is possible to efficiently build trees for several thousand subscribers with latencies within a factor of two of the optimal, and link stresses comparable to, or better than, existing technologies.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A neural model is proposed of how laminar interactions in the visual cortex may learn and recognize object texture and form boundaries. The model brings together five interacting processes: region-based texture classification, contour-based boundary grouping, surface filling-in, spatial attention, and object attention. The model shows how form boundaries can determine regions in which surface filling-in occurs; how surface filling-in interacts with spatial attention to generate a form-fitting distribution of spatial attention, or attentional shroud; how the strongest shroud can inhibit weaker shrouds; and how the winning shroud regulates learning of texture categories, and thus the allocation of object attention. The model can discriminate abutted textures with blurred boundaries and is sensitive to texture boundary attributes like discontinuities in orientation and texture flow curvature as well as to relative orientations of texture elements. The model quantitatively fits a large set of human psychophysical data on orientation-based textures. Object boundar output of the model is compared to computer vision algorithms using a set of human segmented photographic images. The model classifies textures and suppresses noise using a multiple scale oriented filterbank and a distributed Adaptive Resonance Theory (dART) classifier. The matched signal between the bottom-up texture inputs and top-down learned texture categories is utilized by oriented competitive and cooperative grouping processes to generate texture boundaries that control surface filling-in and spatial attention. Topdown modulatory attentional feedback from boundary and surface representations to early filtering stages results in enhanced texture boundaries and more efficient learning of texture within attended surface regions. Surface-based attention also provides a self-supervising training signal for learning new textures. Importance of the surface-based attentional feedback in texture learning and classification is tested using a set of textured images from the Brodatz micro-texture album. Benchmark studies vary from 95.1% to 98.6% with attention, and from 90.6% to 93.2% without attention.