160 resultados para Naval gunnery.
Resumo:
British Petroleum (89A-1204); Defense Advanced Research Projects Agency (N00014-92-J-4015); National Science Foundation (IRI-90-00530); Office of Naval Research (N00014-91-J-4100); Air Force Office of Scientific Research (F49620-92-J-0225)
Resumo:
This article applies a recent theory of 3-D biological vision, called FACADE Theory, to explain several percepts which Kanizsa pioneered. These include 3-D pop-out of an occluding form in front of an occluded form, leading to completion and recognition of the occluded form; 3-D transparent and opaque percepts of Kanizsa squares, with and without Varin wedges; and interactions between percepts of illusory contours, brightness, and depth in response to 2-D Kanizsa images. These explanations clarify how a partially occluded object representation can be completed for purposes of object recognition, without the completed part of the representation necessarily being seen. The theory traces these percepts to neural mechanisms that compensate for measurement uncertainty and complementarity at individual cortical processing stages by using parallel and hierarchical interactions among several cortical processing stages. These interactions are modelled by a Boundary Contour System (BCS) that generates emergent boundary segmentations and a complementary Feature Contour System (FCS) that fills-in surface representations of brightness, color, and depth. The BCS and FCS interact reciprocally with an Object Recognition System (ORS) that binds BCS boundary and FCS surface representations into attentive object representations. The BCS models the parvocellular LGN→Interblob→Interstripe→V4 cortical processing stream, the FCS models the parvocellular LGN→Blob→Thin Stripe→V4 cortical processing stream, and the ORS models inferotemporal cortex.
Resumo:
1) A large body of behavioral data conceming animal and human gaits and gait transitions is simulated as emergent properties of a central pattern generator (CPG) model. The CPG model incorporates neurons obeying Hodgkin-Huxley type dynamics that interact via an on-center off-surround anatomy whose excitatory signals operate on a faster time scale than their inhibitory signals. A descending cornmand or arousal signal called a GO signal activates the gaits and controL their transitions. The GO signal and the CPG model are compared with neural data from globus pallidus and spinal cord, among other brain structures. 2) Data from human bimanual finger coordination tasks are simulated in which anti-phase oscillations at low frequencies spontaneously switch to in-phase oscillations at high frequencies, in-phase oscillations can be performed both at low and high frequencies, phase fluctuations occur at the anti-phase in-phase transition, and a "seagull effect" of larger errors occurs at intermediate phases. When driven by environmental patterns with intermediate phase relationships, the model's output exhibits a tendency to slip toward purely in-phase and anti-phase relationships as observed in humans subjects. 3) Quadruped vertebrate gaits, including the amble, the walk, all three pairwise gaits (trot, pace, and gallop) and the pronk are simulated. Rapid gait transitions are simulated in the order--walk, trot, pace, and gallop--that occurs in the cat, along with the observed increase in oscillation frequency. 4) Precise control of quadruped gait switching is achieved in the model by using GO-dependent modulation of the model's inhibitory interactions. This generates a different functional connectivity in a single CPG at different arousal levels. Such task-specific modulation of functional connectivity in neural pattern generators has been experimentally reported in invertebrates. Phase-dependent modulation of reflex gain has been observed in cats. A role for state-dependent modulation is herein predicted to occur in vertebrates for precise control of phase transitions from one gait to another. 5) The primary human gaits (the walk and the run) and elephant gaits (the amble and the walk) are sirnulated. Although these two gaits are qualitatively different, they both have the same limb order and may exhibit oscillation frequencies that overlap. The CPG model simulates the walk and the run by generating oscillations which exhibit the same phase relationships. but qualitatively different waveform shapes, at different GO signal levels. The fraction of each cycle that activity is above threshold quantitatively distinguishes the two gaits, much as the duty cycles of the feet are longer in the walk than in the run. 6) A key model properly concerns the ability of a single model CPG, that obeys a fixed set of opponent processing equations to generate both in-phase and anti-phase oscillations at different arousal levels. Phase transitions from either in-phase to anti-phase oscillations, or from anti-phase to in-phase oscillations, can occur in different parameter ranges, as the GO signal increases.
Resumo:
An active, attentionally-modulated recognition architecture is proposed for object recognition and scene analysis. The proposed architecture forms part of navigation and trajectory planning modules for mobile robots. Key characteristics of the system include movement planning and execution based on environmental factors and internal goal definitions. Real-time implementation of the system is based on space-variant representation of the visual field, as well as an optimal visual processing scheme utilizing separate and parallel channels for the extraction of boundaries and stimulus qualities. A spatial and temporal grouping module (VWM) allows for scene scanning, multi-object segmentation, and featural/object priming. VWM is used to modulate a tn~ectory formation module capable of redirecting the focus of spatial attention. Finally, an object recognition module based on adaptive resonance theory is interfaced through VWM to the visual processing module. The system is capable of using information from different modalities to disambiguate sensory input.
Resumo:
Fusion ARTMAP is a self-organizing neural network architecture for multi-channel, or multi-sensor, data fusion. Single-channel Fusion ARTMAP is functionally equivalent to Fuzzy ART during unsupervised learning and to Fuzzy ARTMAP during supervised learning. The network has a symmetric organization such that each channel can be dynamically configured to serve as either a data input or a teaching input to the system. An ART module forms a compressed recognition code within each channel. These codes, in turn, become inputs to a single ART system that organizes the global recognition code. When a predictive error occurs, a process called paraellel match tracking simultaneously raises vigilances in multiple ART modules until reset is triggered in one of them. Parallel match tracking hereby resets only that portion of the recognition code with the poorest match, or minimum predictive confidence. This internally controlled selective reset process is a type of credit assignment that creates a parsimoniously connected learned network. Fusion ARTMAP's multi-channel coding is illustrated by simulations of the Quadruped Mammal database.
Resumo:
Speech can be understood at widely varying production rates. A working memory is described for short-term storage of temporal lists of input items. The working memory is a cooperative-competitive neural network that automatically adjusts its integration rate, or gain, to generate a short-term memory code for a list that is independent of item presentation rate. Such an invariant working memory model is used to simulate data of Repp (1980) concerning the changes of phonetic category boundaries as a function of their presentation rate. Thus the variability of categorical boundaries can be traced to the temporal in variance of the working memory code.
Resumo:
This paper shows how a minimal neural network model of the cerebellum may be embedded within a sensory-neuro-muscular control system that mimics known anatomy and physiology. With this embedding, cerebellar learning promotes load compensation while also allowing both coactivation and reciprocal inhibition of sets of antagonist muscles. In particular, we show how synaptic long term depression guided by feedback from muscle stretch receptors can lead to trans-cerebellar gain changes that are load-compensating. It is argued that the same processes help to adaptively discover multi-joint synergies. Simulations of rapid single joint rotations under load illustrates design feasibility and stability.
Resumo:
This article describes the VITEWRITE model for generating handwriting movements. The model consists of a sequential controller, or motor program, that interacts with a trajectory generator to move a hand with redundant degrees of freedom. The neural trajectory generator is the Vector Integration to Endpoint (VITE) model for synchronous variable-speed control of multijoint movements. VITE properties enable a simple control strategy to generate complex handwritten script if the hand model contains redundant degrees of freedom. The controller launches transient directional commands to independent hand synergies at times when the hand begins to move, or when a velocity peak in the outflow command to a given synergy occurs. The VITE model translates these temporally disjoint synergy commands into smooth curvilinear trajectories among temporally overlapping synergetic movements. Each synergy exhibits a unimodal velocity profile during any stroke, generates letters that are invariant under speed and size rescaling, and enables effortless connection of letter shapes into words. Speed and size rescaling are achieved by scalar GO and GRO signals that express computationally simple volitional commands. Psychophysical data such as the isochrony principle, asymmetric velocity profiles, and the two-thirds power law relating movement curvature and velocity arise as emergent properties of model interactions.
Resumo:
A procedure that uses fuzzy ARTMAP and K-Nearest Neighbor (K-NN) categorizers to evaluate intrinsic and extrinsic speaker normalization methods is described. Each classifier is trained on preprocessed, or normalized, vowel tokens from about 30% of the speakers of the Peterson-Barney database, then tested on data from the remaining speakers. Intrinsic normalization methods included one nonscaled, four psychophysical scales (bark, bark with end-correction, mel, ERB), and three log scales, each tested on four different combinations of the fundamental (Fo) and the formants (F1 , F2, F3). For each scale and frequency combination, four extrinsic speaker adaptation schemes were tested: centroid subtraction across all frequencies (CS), centroid subtraction for each frequency (CSi), linear scale (LS), and linear transformation (LT). A total of 32 intrinsic and 128 extrinsic methods were thus compared. Fuzzy ARTMAP and K-NN showed similar trends, with K-NN performing somewhat better and fuzzy ARTMAP requiring about 1/10 as much memory. The optimal intrinsic normalization method was bark scale, or bark with end-correction, using the differences between all frequencies (Diff All). The order of performance for the extrinsic methods was LT, CSi, LS, and CS, with fuzzy AHTMAP performing best using bark scale with Diff All; and K-NN choosing psychophysical measures for all except CSi.
Resumo:
A nonparametric probability estimation procedure using the fuzzy ARTMAP neural network is here described. Because the procedure does not make a priori assumptions about underlying probability distributions, it yields accurate estimates on a wide variety of prediction tasks. Fuzzy ARTMAP is used to perform probability estimation in two different modes. In a 'slow-learning' mode, input-output associations change slowly, with the strength of each association computing a conditional probability estimate. In 'max-nodes' mode, a fixed number of categories are coded during an initial fast learning interval, and weights are then tuned by slow learning. Simulations illustrate system performance on tasks in which various numbers of clusters in the set of input vectors mapped to a given class.
Resumo:
This paper introduces ART-EMAP, a neural architecture that uses spatial and temporal evidence accumulation to extend the capabilities of fuzzy ARTMAP. ART-EMAP combines supervised and unsupervised learning and a medium-term memory process to accomplish stable pattern category recognition in a noisy input environment. The ART-EMAP system features (i) distributed pattern registration at a view category field; (ii) a decision criterion for mapping between view and object categories which can delay categorization of ambiguous objects and trigger an evidence accumulation process when faced with a low confidence prediction; (iii) a process that accumulates evidence at a medium-term memory (MTM) field; and (iv) an unsupervised learning algorithm to fine-tune performance after a limited initial period of supervised network training. ART-EMAP dynamics are illustrated with a benchmark simulation example. Applications include 3-D object recognition from a series of ambiguous 2-D views.
Resumo:
This paper shows how knowledge, in the form of fuzzy rules, can be derived from a self-organizing supervised learning neural network called fuzzy ARTMAP. Rule extraction proceeds in two stages: pruning removes those recognition nodes whose confidence index falls below a selected threshold; and quantization of continuous learned weights allows the final system state to be translated into a usable set of rules. Simulations on a medical prediction problem, the Pima Indian Diabetes (PID) database, illustrate the method. In the simulations, pruned networks about 1/3 the size of the original actually show improved performance. Quantization yields comprehensible rules with only slight degradation in test set prediction performance.
Resumo:
A neural pattern generator based upon a non-linear cooperative-competitive feedback neural network is presented. It can generate the two standard human gaits: the walk and the run. A scalar arousal or GO signal causes a bifurcation from one gait to the next. Although these two gaits are qualitatively different, they both have the same limb order and may exhibit oscillation frequencies that overlap. The model simulates the walk and the run via qualitatively different waveform shapes. The fraction of cycle that activity is above threshold distinguishes the two gaits, much as the duty cycles of the feet are longer in the walk than in the run.
Resumo:
The 2-channel Ellias-Grossberg neural pattern generator of Cohen, Grossberg, and Pribe [1] is shown to simulate data from human bimanual coordination tasks in which anti-phase oscillations at low frequencies spontaneously switch to in-phase oscillations at high frequencies, in-phase oscillations can be performed at both low and high frequencies, phase fluctuations occur at the anti-phase to in-phase transition, and a "seagull effect" of larger errors occurs at intermediate phases.
Resumo:
A four-channel neural pattern generator is described in which both the frequency and the relative phase of oscillations are controlled by a scalar arousal or GO signal. The generator is used to simulate quadruped gaits; in particular, rapid transitions are simulated in the order - walk, trot, pace, and gallop - that occurs in the cat. Precise switching control is achieved by using an arousal dependent modulation of the model's inhibitory interactions. This modulation generates a different functional connectivity in a single network at different arousal levels.