636 resultados para Technical reports.
Resumo:
Research on the construction of logical overlay networks has gained significance in recent times. This is partly due to work on peer-to-peer (P2P) systems for locating and retrieving distributed data objects, and also scalable content distribution using end-system multicast techniques. However, there are emerging applications that require the real-time transport of data from various sources to potentially many thousands of subscribers, each having their own quality-of-service (QoS) constraints. This paper primarily focuses on the properties of two popular topologies found in interconnection networks, namely k-ary n-cubes and de Bruijn graphs. The regular structure of these graph topologies makes them easier to analyze and determine possible routes for real-time data than complete or irregular graphs. We show how these overlay topologies compare in their ability to deliver data according to the QoS constraints of many subscribers, each receiving data from specific publishing hosts. Comparisons are drawn on the ability of each topology to route data in the presence of dynamic system effects, due to end-hosts joining and departing the system. Finally, experimental results show the service guarantees and physical link stress resulting from efficient multicast trees constructed over both kinds of overlay networks.
Resumo:
This paper focuses on an efficient user-level method for the deployment of application-specific extensions, using commodity operating systems and hardware. A sandboxing technique is described that supports multiple extensions within a shared virtual address space. Applications can register sandboxed code with the system, so that it may be executed in the context of any process. Such code may be used to implement generic routines and handlers for a class of applications, or system service extensions that complement the functionality of the core kernel. Using our approach, application-specific extensions can be written like conventional user-level code, utilizing libraries and system calls, with the advantage that they may be executed without the traditional costs of scheduling and context-switching between process-level protection domains. No special hardware support such as segmentation or tagged translation look-aside buffers (TLBs) is required. Instead, our ``user-level sandboxing'' mechanism requires only paged-based virtual memory support, given that sandboxed extensions are either written by a trusted source or are guaranteed to be memory-safe (e.g., using type-safe languages). Using a fast method of upcalls, we show how our mechanism provides significant performance improvements over traditional methods of invoking user-level services. As an application of our approach, we have implemented a user-level network subsystem that avoids data copying via the kernel and, in many cases, yields far greater network throughput than kernel-level approaches.
Resumo:
This paper is centered around the design of a thread- and memory-safe language, primarily for the compilation of application-specific services for extensible operating systems. We describe various issues that have influenced the design of our language, called Cuckoo, that guarantees safety of programs with potentially asynchronous flows of control. Comparisons are drawn between Cuckoo and related software safety techniques, including Cyclone and software-based fault isolation (SFI), and performance results suggest our prototype compiler is capable of generating safe code that executes with low runtime overheads, even without potential code optimizations. Compared to Cyclone, Cuckoo is able to safely guard accesses to memory when programs are multithreaded. Similarly, Cuckoo is capable of enforcing memory safety in situations that are potentially troublesome for techniques such as SFI.
Resumo:
A method called "SymbolDesign" is proposed that can be used to design user-centered interfaces for pen-based input devices. It can also extend the functionality of pointer input devices such as the traditional computer mouse or the Camera Mouse, a camera-based computer interface. Users can create their own interfaces by choosing single-stroke movement patterns that are convenient to draw with the selected input device and by mapping them to a desired set of commands. A pattern could be the trace of a moving finger detected with the Camera Mouse or a symbol drawn with an optical pen. The core of the SymbolDesign system is a dynamically created classifier, in the current implementation an artificial neural network. The architecture of the neural network automatically adjusts according to the complexity of the classification task. In experiments, subjects used the SymbolDesign method to design and test the interfaces they created, for example, to browse the web. The experiments demonstrated good recognition accuracy and responsiveness of the user interfaces. The method provided an easily-designed and easily-used computer input mechanism for people without physical limitations, and, with some modifications, has the potential to become a computer access tool for people with severe paralysis.
Resumo:
A novel method that combines shape-based object recognition and image segmentation is proposed for shape retrieval from images. Given a shape prior represented in a multi-scale curvature form, the proposed method identifies the target objects in images by grouping oversegmented image regions. The problem is formulated in a unified probabilistic framework and solved by a stochastic Markov Chain Monte Carlo (MCMC) mechanism. By this means, object segmentation and recognition are accomplished simultaneously. Within each sampling move during the simulation process,probabilistic region grouping operations are influenced by both the image information and the shape similarity constraint. The latter constraint is measured by a partial shape matching process. A generalized parallel algorithm by Barbu and Zhu,combined with a large sampling jump and other implementation improvements, greatly speeds up the overall stochastic process. The proposed method supports the segmentation and recognition of multiple occluded objects in images. Experimental results are provided for both synthetic and real images.
Resumo:
Nearest neighbor classification using shape context can yield highly accurate results in a number of recognition problems. Unfortunately, the approach can be too slow for practical applications, and thus approximation strategies are needed to make shape context practical. This paper proposes a method for efficient and accurate nearest neighbor classification in non-Euclidean spaces, such as the space induced by the shape context measure. First, a method is introduced for constructing a Euclidean embedding that is optimized for nearest neighbor classification accuracy. Using that embedding, multiple approximations of the underlying non-Euclidean similarity measure are obtained, at different levels of accuracy and efficiency. The approximations are automatically combined to form a cascade classifier, which applies the slower approximations only to the hardest cases. Unlike typical cascade-of-classifiers approaches, that are applied to binary classification problems, our method constructs a cascade for a multiclass problem. Experiments with a standard shape data set indicate that a two-to-three order of magnitude speed up is gained over the standard shape context classifier, with minimal losses in classification accuracy.
Resumo:
A common problem in many types of databases is retrieving the most similar matches to a query object. Finding those matches in a large database can be too slow to be practical, especially in domains where objects are compared using computationally expensive similarity (or distance) measures. This paper proposes a novel method for approximate nearest neighbor retrieval in such spaces. Our method is embedding-based, meaning that it constructs a function that maps objects into a real vector space. The mapping preserves a large amount of the proximity structure of the original space, and it can be used to rapidly obtain a short list of likely matches to the query. The main novelty of our method is that it constructs, together with the embedding, a query-sensitive distance measure that should be used when measuring distances in the vector space. The term "query-sensitive" means that the distance measure changes depending on the current query object. We report experiments with an image database of handwritten digits, and a time-series database. In both cases, the proposed method outperforms existing state-of-the-art embedding methods, meaning that it provides significantly better trade-offs between efficiency and retrieval accuracy.
Resumo:
The data streaming model provides an attractive framework for one-pass summarization of massive data sets at a single observation point. However, in an environment where multiple data streams arrive at a set of distributed observation points, sketches must be computed remotely and then must be aggregated through a hierarchy before queries may be conducted. As a result, many sketch-based methods for the single stream case do not apply directly, as either the error introduced becomes large, or because the methods assume that the streams are non-overlapping. These limitations hinder the application of these techniques to practical problems in network traffic monitoring and aggregation in sensor networks. To address this, we develop a general framework for evaluating and enabling robust computation of duplicate-sensitive aggregate functions (e.g., SUM and QUANTILE), over data produced by distributed sources. We instantiate our approach by augmenting the Count-Min and Quantile-Digest sketches to apply in this distributed setting, and analyze their performance. We conclude with experimental evaluation to validate our analysis.
Resumo:
A human-computer interface (HCI) system designed for use by people with severe disabilities is presented. People that are severely paralyzed or afflicted with diseases such as ALS (Lou Gehrig's disease) or multiple sclerosis are unable to move or control any parts of their bodies except for their eyes. The system presented here detects the user's eye blinks and analyzes the pattern and duration of the blinks, using them to provide input to the computer in the form of a mouse click. After the automatic initialization of the system occurs from the processing of the user's involuntary eye blinks in the first few seconds of use, the eye is tracked in real time using correlation with an online template. If the user's depth changes significantly or rapid head movement occurs, the system is automatically reinitialized. There are no lighting requirements nor offline templates needed for the proper functioning of the system. The system works with inexpensive USB cameras and runs at a frame rate of 30 frames per second. Extensive experiments were conducted to determine both the system's accuracy in classifying voluntary and involuntary blinks, as well as the system's fitness in varying environment conditions, such as alternative camera placements and different lighting conditions. These experiments on eight test subjects yielded an overall detection accuracy of 95.3%.
Resumo:
The heterogeneity and open nature of network systems make analysis of compositions of components quite challenging, making the design and implementation of robust network services largely inaccessible to the average programmer. We propose the development of a novel type system and practical type spaces which reflect simplified representations of the results and conclusions which can be derived from complex compositional theories in more accessible ways, essentially allowing the system architect or programmer to be exposed only to the inputs and output of compositional analysis without having to be familiar with the ins and outs of its internals. Toward this end we present the TRAFFIC (Typed Representation and Analysis of Flows For Interoperability Checks) framework, a simple flow-composition and typing language with corresponding type system. We then discuss and demonstrate the expressive power of a type space for TRAFFIC derived from the network calculus, allowing us to reason about and infer such properties as data arrival, transit, and loss rates in large composite network applications.
Resumo:
This paper formally defines the operational semantic for TRAFFIC, a specification language for flow composition applications proposed in BUCS-TR-2005-014, and presents a type system based on desired safety assurance. We provide proofs on reduction (weak-confluence, strong-normalization and unique normal form), on soundness and completeness of type system with respect to reduction, and on equivalence classes of flow specifications. Finally, we provide a pseudo-code listing of a syntax-directed type checking algorithm implementing rules of the type system capable of inferring the type of a closed flow specification.
Resumo:
We introduce a view-point invariant representation of moving object trajectories that can be used in video database applications. It is assumed that trajectories lie on a surface that can be locally approximated with a plane. Raw trajectory data is first locally approximated with a cubic spline via least squares fitting. For each sampled point of the obtained curve, a projective invariant feature is computed using a small number of points in its neighborhood. The resulting sequence of invariant features computed along the entire trajectory forms the view invariant descriptor of the trajectory itself. Time parametrization has been exploited to compute cross ratios without ambiguity due to point ordering. Similarity between descriptors of different trajectories is measured with a distance that takes into account the statistical properties of the cross ratio, and its symmetry with respect to the point at infinity. In experiments, an overall correct classification rate of about 95% has been obtained on a dataset of 58 trajectories of players in soccer video, and an overall correct classification rate of about 80% has been obtained on matching partial segments of trajectories collected from two overlapping views of outdoor scenes with moving people and cars.
Resumo:
We introduce a method for recovering the spatial and temporal alignment between two or more views of objects moving over a ground plane. Existing approaches either assume that the streams are globally synchronized, so that only solving the spatial alignment is needed, or that the temporal misalignment is small enough so that exhaustive search can be performed. In contrast, our approach can recover both the spatial and temporal alignment. We compute for each trajectory a number of interesting segments, and we use their description to form putative matches between trajectories. Each pair of corresponding interesting segments induces a temporal alignment, and defines an interval of common support across two views of an object that is used to recover the spatial alignment. Interesting segments and their descriptors are defined using algebraic projective invariants measured along the trajectories. Similarity between interesting segments is computed taking into account the statistics of such invariants. Candidate alignment parameters are verified checking the consistency, in terms of the symmetric transfer error, of all the putative pairs of corresponding interesting segments. Experiments are conducted with two different sets of data, one with two views of an outdoor scene featuring moving people and cars, and one with four views of a laboratory sequence featuring moving radio-controlled cars.
Resumo:
Moving cameras are needed for a wide range of applications in robotics, vehicle systems, surveillance, etc. However, many foreground object segmentation methods reported in the literature are unsuitable for such settings; these methods assume that the camera is fixed and the background changes slowly, and are inadequate for segmenting objects in video if there is significant motion of the camera or background. To address this shortcoming, a new method for segmenting foreground objects is proposed that utilizes binocular video. The method is demonstrated in the application of tracking and segmenting people in video who are approximately facing the binocular camera rig. Given a stereo image pair, the system first tries to find faces. Starting at each face, the region containing the person is grown by merging regions from an over-segmented color image. The disparity map is used to guide this merging process. The system has been implemented on a consumer-grade PC, and tested on video sequences of people indoors obtained from a moving camera rig. As can be expected, the proposed method works well in situations where other foreground-background segmentation methods typically fail. We believe that this superior performance is partly due to the use of object detection to guide region merging in disparity/color foreground segmentation, and partly due to the use of disparity information available with a binocular rig, in contrast with most previous methods that assumed monocular sequences.
Resumo:
Nearest neighbor classifiers are simple to implement, yet they can model complex non-parametric distributions, and provide state-of-the-art recognition accuracy in OCR databases. At the same time, they may be too slow for practical character recognition, especially when they rely on similarity measures that require computationally expensive pairwise alignments between characters. This paper proposes an efficient method for computing an approximate similarity score between two characters based on their exact alignment to a small number of prototypes. The proposed method is applied to both online and offline character recognition, where similarity is based on widely used and computationally expensive alignment methods, i.e., Dynamic Time Warping and the Hungarian method respectively. In both cases significant recognition speedup is obtained at the expense of only a minor increase in recognition error.