21 resultados para Traces
Resumo:
Temporal locality of reference in Web request streams emerges from two distinct phenomena: the popularity of Web objects and the {\em temporal correlation} of requests. Capturing these two elements of temporal locality is important because it enables cache replacement policies to adjust how they capitalize on temporal locality based on the relative prevalence of these phenomena. In this paper, we show that temporal locality metrics proposed in the literature are unable to delineate between these two sources of temporal locality. In particular, we show that the commonly-used distribution of reference interarrival times is predominantly determined by the power law governing the popularity of documents in a request stream. To capture (and more importantly quantify) both sources of temporal locality in a request stream, we propose a new and robust metric that enables accurate delineation between locality due to popularity and that due to temporal correlation. Using this metric, we characterize the locality of reference in a number of representative proxy cache traces. Our findings show that there are measurable differences between the degrees (and sources) of temporal locality across these traces, and that these differences are effectively captured using our proposed metric. We illustrate the significance of our findings by summarizing the performance of a novel Web cache replacement policy---called GreedyDual*---which exploits both long-term popularity and short-term temporal correlation in an adaptive fashion. Our trace-driven simulation experiments (which are detailed in an accompanying Technical Report) show the superior performance of GreedyDual* when compared to other Web cache replacement policies.
Resumo:
Much work on the performance of Web proxy caching has focused on high-level metrics such as hit rate and byte hit rate, but has ignored all the information related to the cachability of Web objects. Uncachable objects include those fetched by dynamic requests, objects with uncachable HTTP status code, objects with the uncachable HTTP header, objects with an HTTP 1.0 cookie, and objects without a last-modified header. Although some researchers filter the Web traces before they use them for analysis or simulation,many do not have a comprehensive understanding of the cachability of Web objects. In this paper we evaluate all the reasons that a Web object might be uncachable. We use traces from NLANR. Since these traces do not contain HTTP header information, we replay them using request generator to get the response header information. We find that between 15% and 40% of Web objects in our traces can not be cached by a Web proxy server. We use a LRU simulator to show the performance gap when the cachability is either considered or not. We show the characteristics of the cachable data set and find that all its characteristics are fairly similar to that of total data set. Finally, we present some additional results for the cachable and total data set: (1) The main reasons for uncachability are: dynamic requests, responses without last-modified header, responses with HTTP "302 Moved Temporarily" status code, and responses with a HTTP/1.0 cookie. (2) The cachability of Web objects can not be ignored in simulation because uncachable objects comprise a huge percentage of the total trace. Simulations without cachability consideration will be misleading.
Resumo:
The increasing practicality of large-scale flow capture makes it possible to conceive of traffic analysis methods that detect and identify a large and diverse set of anomalies. However the challenge of effectively analyzing this massive data source for anomaly diagnosis is as yet unmet. We argue that the distributions of packet features (IP addresses and ports) observed in flow traces reveals both the presence and the structure of a wide range of anomalies. Using entropy as a summarization tool, we show that the analysis of feature distributions leads to significant advances on two fronts: (1) it enables highly sensitive detection of a wide range of anomalies, augmenting detections by volume-based methods, and (2) it enables automatic classification of anomalies via unsupervised learning. We show that using feature distributions, anomalies naturally fall into distinct and meaningful clusters. These clusters can be used to automatically classify anomalies and to uncover new anomaly types. We validate our claims on data from two backbone networks (Abilene and Geant) and conclude that feature distributions show promise as a key element of a fairly general network anomaly diagnosis framework.
Resumo:
In many networked applications, independent caching agents cooperate by servicing each other's miss streams, without revealing the operational details of the caching mechanisms they employ. Inference of such details could be instrumental for many other processes. For example, it could be used for optimized forwarding (or routing) of one's own miss stream (or content) to available proxy caches, or for making cache-aware resource management decisions. In this paper, we introduce the Cache Inference Problem (CIP) as that of inferring the characteristics of a caching agent, given the miss stream of that agent. While CIP is insolvable in its most general form, there are special cases of practical importance in which it is, including when the request stream follows an Independent Reference Model (IRM) with generalized power-law (GPL) demand distribution. To that end, we design two basic "litmus" tests that are able to detect LFU and LRU replacement policies, the effective size of the cache and of the object universe, and the skewness of the GPL demand for objects. Using extensive experiments under synthetic as well as real traces, we show that our methods infer such characteristics accurately and quite efficiently, and that they remain robust even when the IRM/GPL assumptions do not hold, and even when the underlying replacement policies are not "pure" LFU or LRU. We exemplify the value of our inference framework by considering example applications.
Resumo:
A full understanding of consciouness requires that we identify the brain processes from which conscious experiences emerge. What are these processes, and what is their utility in supporting successful adaptive behaviors? Adaptive Resonance Theory (ART) predicted a functional link between processes of Consciousness, Learning, Expectation, Attention, Resonance, and Synchrony (CLEARS), includes the prediction that "all conscious states are resonant states." This connection clarifies how brain dynamics enable a behaving individual to autonomously adapt in real time to a rapidly changing world. The present article reviews theoretical considerations that predicted these functional links, how they work, and some of the rapidly growing body of behavioral and brain data that have provided support for these predictions. The article also summarizes ART models that predict functional roles for identified cells in laminar thalamocortical circuits, including the six layered neocortical circuits and their interactions with specific primary and higher-order specific thalamic nuclei and nonspecific nuclei. These prediction include explanations of how slow perceptual learning can occur more frequently in superficial cortical layers. ART traces these properties to the existence of intracortical feedback loops, and to reset mechanisms whereby thalamocortical mismatches use circuits such as the one from specific thalamic nuclei to nonspecific thalamic nuclei and then to layer 4 of neocortical areas via layers 1-to-5-to-6-to-4.
Resumo:
This article applies a recent theory of 3-D biological vision, called FACADE Theory, to explain several percepts which Kanizsa pioneered. These include 3-D pop-out of an occluding form in front of an occluded form, leading to completion and recognition of the occluded form; 3-D transparent and opaque percepts of Kanizsa squares, with and without Varin wedges; and interactions between percepts of illusory contours, brightness, and depth in response to 2-D Kanizsa images. These explanations clarify how a partially occluded object representation can be completed for purposes of object recognition, without the completed part of the representation necessarily being seen. The theory traces these percepts to neural mechanisms that compensate for measurement uncertainty and complementarity at individual cortical processing stages by using parallel and hierarchical interactions among several cortical processing stages. These interactions are modelled by a Boundary Contour System (BCS) that generates emergent boundary segmentations and a complementary Feature Contour System (FCS) that fills-in surface representations of brightness, color, and depth. The BCS and FCS interact reciprocally with an Object Recognition System (ORS) that binds BCS boundary and FCS surface representations into attentive object representations. The BCS models the parvocellular LGN→Interblob→Interstripe→V4 cortical processing stream, the FCS models the parvocellular LGN→Blob→Thin Stripe→V4 cortical processing stream, and the ORS models inferotemporal cortex.