352 resultados para National Science Foundation


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A combined 2D, 3D approach is presented that allows for robust tracking of moving bodies in a given environment as observed via a single, uncalibrated video camera. Tracking is robust even in the presence of occlusions. Low-level features are often insufficient for detection, segmentation, and tracking of non-rigid moving objects. Therefore, an improved mechanism is proposed that combines low-level (image processing) and mid-level (recursive trajectory estimation) information obtained during the tracking process. The resulting system can segment and maintain the tracking of moving objects before, during, and after occlusion. At each frame, the system also extracts a stabilized coordinate frame of the moving objects. This stabilized frame is used to resize and resample the moving blob so that it can be used as input to motion recognition modules. The approach enables robust tracking without constraining the system to know the shape of the objects being tracked beforehand; although, some assumptions are made about the characteristics of the shape of the objects, and how they evolve with time. Experiments in tracking moving people are described.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we present Slack Stealing Job Admission Control (SSJAC)---a methodology for scheduling periodic firm-deadline tasks with variable resource requirements, subject to controllable Quality of Service (QoS) constraints. In a system that uses Rate Monotonic Scheduling, SSJAC augments the slack stealing algorithm of Thuel et al with an admission control policy to manage the variability in the resource requirements of the periodic tasks. This enables SSJAC to take advantage of the 31\% of utilization that RMS cannot use, as well as any utilization unclaimed by jobs that are not admitted into the system. Using SSJAC, each task in the system is assigned a resource utilization threshold that guarantees the minimal acceptable QoS for that task (expressed as an upper bound on the rate of missed deadlines). Job admission control is used to ensure that (1) only those jobs that will complete by their deadlines are admitted, and (2) tasks do not interfere with each other, thus a job can only monopolize the slack in the system, but not the time guaranteed to jobs of other tasks. We have evaluated SSJAC against RMS and Statistical RMS (SRMS). Ignoring overhead issues, SSJAC consistently provides better performance than RMS in overload, and, in certain conditions, better performance than SRMS. In addition, to evaluate optimality of SSJAC in an absolute sense, we have characterized the performance of SSJAC by comparing it to an inefficient, yet optimal scheduler for task sets with harmonic periods.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper we present Statistical Rate Monotonic Scheduling (SRMS), a generalization of the classical RMS results of Liu and Layland that allows scheduling periodic tasks with highly variable execution times and statistical QoS requirements. Similar to RMS, SRMS has two components: a feasibility test and a scheduling algorithm. The feasibility test for SRMS ensures that using SRMS' scheduling algorithms, it is possible for a given periodic task set to share a given resource (e.g. a processor, communication medium, switching device, etc.) in such a way that such sharing does not result in the violation of any of the periodic tasks QoS constraints. The SRMS scheduling algorithm incorporates a number of unique features. First, it allows for fixed priority scheduling that keeps the tasks' value (or importance) independent of their periods. Second, it allows for job admission control, which allows the rejection of jobs that are not guaranteed to finish by their deadlines as soon as they are released, thus enabling the system to take necessary compensating actions. Also, admission control allows the preservation of resources since no time is spent on jobs that will miss their deadlines anyway. Third, SRMS integrates reservation-based and best-effort resource scheduling seamlessly. Reservation-based scheduling ensures the delivery of the minimal requested QoS; best-effort scheduling ensures that unused, reserved bandwidth is not wasted, but rather used to improve QoS further. Fourth, SRMS allows a system to deal gracefully with overload conditions by ensuring a fair deterioration in QoS across all tasks---as opposed to penalizing tasks with longer periods, for example. Finally, SRMS has the added advantage that its schedulability test is simple and its scheduling algorithm has a constant overhead in the sense that the complexity of the scheduler is not dependent on the number of the tasks in the system. We have evaluated SRMS against a number of alternative scheduling algorithms suggested in the literature (e.g. RMS and slack stealing), as well as refinements thereof, which we describe in this paper. Consistently throughout our experiments, SRMS provided the best performance. In addition, to evaluate the optimality of SRMS, we have compared it to an inefficient, yet optimal scheduler for task sets with harmonic periods.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Quality of Service (QoS) guarantees are required by an increasing number of applications to ensure a minimal level of fidelity in the delivery of application data units through the network. Application-level QoS does not necessarily follow from any transport-level QoS guarantees regarding the delivery of the individual cells (e.g. ATM cells) which comprise the application's data units. The distinction between application-level and transport-level QoS guarantees is due primarily to the fragmentation that occurs when transmitting large application data units (e.g. IP packets, or video frames) using much smaller network cells, whereby the partial delivery of a data unit is useless; and, bandwidth spent to partially transmit the data unit is wasted. The data units transmitted by an application may vary in size while being constant in rate, which results in a variable bit rate (VBR) data flow. That data flow requires QoS guarantees. Statistical multiplexing is inadequate, because no guarantees can be made and no firewall property exists between different data flows. In this paper, we present a novel resource management paradigm for the maintenance of application-level QoS for VBR flows. Our paradigm is based on Statistical Rate Monotonic Scheduling (SRMS), in which (1) each application generates its variable-size data units at a fixed rate, (2) the partial delivery of data units is of no value to the application, and (3) the QoS guarantee extended to the application is the probability that an arbitrary data unit will be successfully transmitted through the network to/from the application.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Statistical Rate Monotonic Scheduling (SRMS) is a generalization of the classical RMS results of Liu and Layland [LL73] for periodic tasks with highly variable execution times and statistical QoS requirements. The main tenet of SRMS is that the variability in task resource requirements could be smoothed through aggregation to yield guaranteed QoS. This aggregation is done over time for a given task and across multiple tasks for a given period of time. Similar to RMS, SRMS has two components: a feasibility test and a scheduling algorithm. SRMS feasibility test ensures that it is possible for a given periodic task set to share a given resource without violating any of the statistical QoS constraints imposed on each task in the set. The SRMS scheduling algorithm consists of two parts: a job admission controller and a scheduler. The SRMS scheduler is a simple, preemptive, fixed-priority scheduler. The SRMS job admission controller manages the QoS delivered to the various tasks through admit/reject and priority assignment decisions. In particular, it ensures the important property of task isolation, whereby tasks do not infringe on each other. In this paper we present the design and implementation of SRMS within the KURT Linux Operating System [HSPN98, SPH 98, Sri98]. KURT Linux supports conventional tasks as well as real-time tasks. It provides a mechanism for transitioning from normal Linux scheduling to a mixed scheduling of conventional and real-time tasks, and to a focused mode where only real-time tasks are scheduled. We overview the technical issues that we had to overcome in order to integrate SRMS into KURT Linux and present the API we have developed for scheduling periodic real-time tasks using SRMS.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Most real-time scheduling problems are known to be NP-complete. To enable accurate comparison between the schedules of heuristic algorithms and the optimal schedule, we introduce an omniscient oracle. This oracle provides schedules for periodic task sets with harmonic periods and variable resource requirements. Three different job value functions are described and implemented. Each corresponds to a different system goal. The oracle is used to examine the performance of different on-line schedulers under varying loads, including overload. We have compared the oracle against Rate Monotonic Scheduling, Statistical Rate Monotonic Scheduling, and Slack Stealing Job Admission Control Scheduling. Consistently, the oracle provides an upper bound on performance for the metric under consideration.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Principality of typings is the property that for each typable term, there is a typing from which all other typings are obtained via some set of operations. Type inference is the problem of finding a typing for a given term, if possible. We define an intersection type system which has principal typings and types exactly the strongly normalizable λ-terms. More interestingly, every finite-rank restriction of this system (using Leivant's first notion of rank) has principal typings and also has decidable type inference. This is in contrast to System F where the finite rank restriction for every finite rank at 3 and above has neither principal typings nor decidable type inference. This is also in contrast to earlier presentations of intersection types where the status of these properties is not known for the finite-rank restrictions at 3 and above.Furthermore, the notion of principal typings for our system involves only one operation, substitution, rather than several operations (not all substitution-based) as in earlier presentations of principality for intersection types (of unrestricted rank). A unification-based type inference algorithm is presented using a new form of unification, β-unification.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A method for deformable shape detection and recognition is described. Deformable shape templates are used to partition the image into a globally consistent interpretation, determined in part by the minimum description length principle. Statistical shape models enforce the prior probabilities on global, parametric deformations for each object class. Once trained, the system autonomously segments deformed shapes from the background, while not merging them with adjacent objects or shadows. The formulation can be used to group image regions based on any image homogeneity predicate; e.g., texture, color, or motion. The recovered shape models can be used directly in object recognition. Experiments with color imagery are reported.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An improved technique for 3D head tracking under varying illumination conditions is proposed. The head is modeled as a texture mapped cylinder. Tracking is formulated as an image registration problem in the cylinder's texture map image. To solve the registration problem in the presence of lighting variation and head motion, the residual error of registration is modeled as a linear combination of texture warping templates and orthogonal illumination templates. Fast and stable on-line tracking is then achieved via regularized, weighted least squares minimization of the registration error. The regularization term tends to limit potential ambiguities that arise in the warping and illumination templates. It enables stable tracking over extended sequences. Tracking does not require a precise initial fit of the model; the system is initialized automatically using a simple 2-D face detector. The only assumption is that the target is facing the camera in the first frame of the sequence. The warping templates are computed at the first frame of the sequence. Illumination templates are precomputed off-line over a training set of face images collected under varying lighting conditions. Experiments in tracking are reported.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Understanding the nature of the workloads and system demands created by users of the World Wide Web is crucial to properly designing and provisioning Web services. Previous measurements of Web client workloads have been shown to exhibit a number of characteristic features; however, it is not clear how those features may be changing with time. In this study we compare two measurements of Web client workloads separated in time by three years, both captured from the same computing facility at Boston University. The older dataset, obtained in 1995, is well-known in the research literature and has been the basis for a wide variety of studies. The newer dataset was captured in 1998 and is comparable in size to the older dataset. The new dataset has the drawback that the collection of users measured may no longer be representative of general Web users; however using it has the advantage that many comparisons can be drawn more clearly than would be possible using a new, different source of measurement. Our results fall into two categories. First we compare the statistical and distributional properties of Web requests across the two datasets. This serves to reinforce and deepen our understanding of the characteristic statistical properties of Web client requests. We find that the kinds of distributions that best describe document sizes have not changed between 1995 and 1998, although specific values of the distributional parameters are different. Second, we explore the question of how the observed differences in the properties of Web client requests, particularly the popularity and temporal locality properties, affect the potential for Web file caching in the network. We find that for the computing facility represented by our traces between 1995 and 1998, (1) the benefits of using size-based caching policies have diminished; and (2) the potential for caching requested files in the network has declined.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we propose and evaluate an implementation of a prototype scalable web server. The prototype consists of a load-balanced cluster of hosts that collectively accept and service TCP connections. The host IP addresses are advertised using the Round Robin DNS technique, allowing any host to receive requests from any client. Once a client attempts to establish a TCP connection with one of the hosts, a decision is made as to whether or not the connection should be redirected to a different host---namely, the host with the lowest number of established connections. We use the low-overhead Distributed Packet Rewriting (DPR) technique to redirect TCP connections. In our prototype, each host keeps information about connections in hash tables and linked lists. Every time a packet arrives, it is examined to see if it has to be redirected or not. Load information is maintained using periodic broadcasts amongst the cluster hosts.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Under high loads, a Web server may be servicing many hundreds of connections concurrently. In traditional Web servers, the question of the order in which concurrent connections are serviced has been left to the operating system. In this paper we ask whether servers might provide better service by using non-traditional service ordering. In particular, for the case when a Web server is serving static files, we examine the costs and benefits of a policy that gives preferential service to short connections. We start by assessing the scheduling behavior of a commonly used server (Apache running on Linux) with respect to connection size and show that it does not appear to provide preferential service to short connections. We then examine the potential performance improvements of a policy that does favor short connections (shortest-connection-first). We show that mean response time can be improved by factors of four or five under shortest-connection-first, as compared to an (Apache-like) size-independent policy. Finally we assess the costs of shortest-connection-first scheduling in terms of unfairness (i.e., the degree to which long connections suffer). We show that under shortest-connection-first scheduling, long connections pay very little penalty. This surprising result can be understood as a consequence of heavy-tailed Web server workloads, in which most connections are small, but most server load is due to the few large connections. We support this explanation using analysis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dynamic service aggregation techniques can exploit skewed access popularity patterns to reduce the costs of building interactive VoD systems. These schemes seek to cluster and merge users into single streams by bridging the temporal skew between them, thus improving server and network utilization. Rate adaptation and secondary content insertion are two such schemes. In this paper, we present and evaluate an optimal scheduling algorithm for inserting secondary content in this scenario. The algorithm runs in polynomial time, and is optimal with respect to the total bandwidth usage over the merging interval. We present constraints on content insertion which make the overall QoS of the delivered stream acceptable, and show how our algorithm can satisfy these constraints. We report simulation results which quantify the excellent gains due to content insertion. We discuss dynamic scenarios with user arrivals and interactions, and show that content insertion reduces the channel bandwidth requirement to almost half. We also discuss differentiated service techniques, such as N-VoD and premium no-advertisement service, and show how our algorithm can support these as well.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Web caching aims to reduce network traffic, server load, and user-perceived retrieval delays by replicating "popular" content on proxy caches that are strategically placed within the network. While key to effective cache utilization, popularity information (e.g. relative access frequencies of objects requested through a proxy) is seldom incorporated directly in cache replacement algorithms. Rather, other properties of the request stream (e.g. temporal locality and content size), which are easier to capture in an on-line fashion, are used to indirectly infer popularity information, and hence drive cache replacement policies. Recent studies suggest that the correlation between these secondary properties and popularity is weakening due in part to the prevalence of efficient client and proxy caches (which tend to mask these correlations). This trend points to the need for proxy cache replacement algorithms that directly capture and use popularity information. In this paper, we (1) present an on-line algorithm that effectively captures and maintains an accurate popularity profile of Web objects requested through a caching proxy, (2) propose a novel cache replacement policy that uses such information to generalize the well-known GreedyDual-Size algorithm, and (3) show the superiority of our proposed algorithm by comparing it to a host of recently-proposed and widely-used algorithms using extensive trace-driven simulations and a variety of performance metrics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An increasing number of applications, such as distributed interactive simulation, live auctions, distributed games and collaborative systems, require the network to provide a reliable multicast service. This service enables one sender to reliably transmit data to multiple receivers. Reliability is traditionally achieved by having receivers send negative acknowledgments (NACKs) to request from the sender the retransmission of lost (or missing) data packets. However, this Automatic Repeat reQuest (ARQ) approach results in the well-known NACK implosion problem at the sender. Many reliable multicast protocols have been recently proposed to reduce NACK implosion. But, the message overhead due to NACK requests remains significant. Another approach, based on Forward Error Correction (FEC), requires the sender to encode additional redundant information so that a receiver can independently recover from losses. However, due to the lack of feedback from receivers, it is impossible for the sender to determine how much redundancy is needed. In this paper, we propose a new reliable multicast protocol, called ARM for Adaptive Reliable Multicast. Our protocol integrates ARQ and FEC techniques. The objectives of ARM are (1) reduce the message overhead due to NACK requests, (2) reduce the amount of data transmission, and (3) reduce the time it takes for all receivers to receive the data intact (without loss). During data transmission, the sender periodically informs the receivers of the number of packets that are yet to be transmitted. Based on this information, each receiver predicts whether this amount is enough to recover its losses. Only if it is not enough, that the receiver requests the sender to encode additional redundant packets. Using ns simulations, we show the superiority of our hybrid ARQ-FEC protocol over the well-known Scalable Reliable Multicast (SRM) protocol.