161 resultados para naval architect knowledgebase


Relevância:

10.00% 10.00%

Publicador:

Resumo:

A neural model is presented of how cortical areas V1, V2, and V4 interact to convert a textured 2D image into a representation of curved 3D shape. Two basic problems are solved to achieve this: (1) Patterns of spatially discrete 2D texture elements are transformed into a spatially smooth surface representation of 3D shape. (2) Changes in the statistical properties of texture elements across space induce the perceived 3D shape of this surface representation. This is achieved in the model through multiple-scale filtering of a 2D image, followed by a cooperative-competitive grouping network that coherently binds texture elements into boundary webs at the appropriate depths using a scale-to-depth map and a subsequent depth competition stage. These boundary webs then gate filling-in of surface lightness signals in order to form a smooth 3D surface percept. The model quantitatively simulates challenging psychophysical data about perception of prolate ellipsoids (Todd and Akerstrom, 1987, J. Exp. Psych., 13, 242). In particular, the model represents a high degree of 3D curvature for a certain class of images, all of whose texture elements have the same degree of optical compression, in accordance with percepts of human observers. Simulations of 3D percepts of an elliptical cylinder, a slanted plane, and a photo of a golf ball are also presented.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

How do the layered circuits of prefrontal and motor cortex carry out working memory storage, sequence learning, and voluntary sequential item selection and performance? A neural model called LIST PARSE is presented to explain and quantitatively simulate cognitive data about both immediate serial recall and free recall, including bowing of the serial position performance curves, error-type distributions, temporal limitations upon recall, and list length effects. The model also qualitatively explains cognitive effects related to attentional modulation, temporal grouping, variable presentation rates, phonemic similarity, presentation of non-words, word frequency/item familiarity and list strength, distracters and modality effects. In addition, the model quantitatively simulates neurophysiological data from the macaque prefrontal cortex obtained during sequential sensory-motor imitation and planned performance. The article further develops a theory concerning how the cerebral cortex works by showing how variations of the laminar circuits that have previously clarified how the visual cortex sees can also support cognitive processing of sequentially organized behaviors.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

How do visual form and motion processes cooperate to compute object motion when each process separately is insufficient? Consider, for example, a deer moving behind a bush. Here the partially occluded fragments of motion signals available to an observer must be coherently grouped into the motion of a single object. A 3D FORMOTION model comprises five important functional interactions involving the brain’s form and motion systems that address such situations. Because the model’s stages are analogous to areas of the primate visual system, we refer to the stages by corresponding anatomical names. In one of these functional interactions, 3D boundary representations, in which figures are separated from their backgrounds, are formed in cortical area V2. These depth-selective V2 boundaries select motion signals at the appropriate depths in MT via V2-to-MT signals. In another, motion signals in MT disambiguate locally incomplete or ambiguous boundary signals in V2 via MT-to-V1-to-V2 feedback. The third functional property concerns resolution of the aperture problem along straight moving contours by propagating the influence of unambiguous motion signals generated at contour terminators or corners. Here, sparse “feature tracking signals” from, e.g., line ends, are amplified to overwhelm numerically superior ambiguous motion signals along line segment interiors. In the fourth, a spatially anisotropic motion grouping process takes place across perceptual space via MT-MST feedback to integrate veridical feature-tracking and ambiguous motion signals to determine a global object motion percept. The fifth property uses the MT-MST feedback loop to convey an attentional priming signal from higher brain areas back to V1 and V2. The model's use of mechanisms such as divisive normalization, endstopping, cross-orientation inhibition, and longrange cooperation is described. Simulated data include: the degree of motion coherence of rotating shapes observed through apertures, the coherent vs. element motion percepts separated in depth during the chopsticks illusion, and the rigid vs. non-rigid appearance of rotating ellipses.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The hippocampus participates in multiple functions, including spatial navigation, adaptive timing, and declarative (notably, episodic) memory. How does it carry out these particular functions? The present article proposes that hippocampal spatial and temporal processing are carried out by parallel circuits within entorhinal cortex, dentate gyrus, and CA3 that are variations of the same circuit design. In particular, interactions between these brain regions transform fine spatial and temporal scales into population codes that are capable of representing the much larger spatial and temporal scales that are needed to control adaptive behaviors. Previous models of adaptively timed learning propose how a spectrum of cells tuned to brief but different delays are combined and modulated by learning to create a population code for controlling goal-oriented behaviors that span hundreds of milliseconds or even seconds. Here it is proposed how projections from entorhinal grid cells can undergo a similar learning process to create hippocampal place cells that can cover a space of many meters that are needed to control navigational behaviors. The suggested homology between spatial and temporal processing may clarify how spatial and temporal information may be integrated into an episodic memory.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A neural model is proposed of how laminar interactions in the visual cortex may learn and recognize object texture and form boundaries. The model brings together five interacting processes: region-based texture classification, contour-based boundary grouping, surface filling-in, spatial attention, and object attention. The model shows how form boundaries can determine regions in which surface filling-in occurs; how surface filling-in interacts with spatial attention to generate a form-fitting distribution of spatial attention, or attentional shroud; how the strongest shroud can inhibit weaker shrouds; and how the winning shroud regulates learning of texture categories, and thus the allocation of object attention. The model can discriminate abutted textures with blurred boundaries and is sensitive to texture boundary attributes like discontinuities in orientation and texture flow curvature as well as to relative orientations of texture elements. The model quantitatively fits a large set of human psychophysical data on orientation-based textures. Object boundar output of the model is compared to computer vision algorithms using a set of human segmented photographic images. The model classifies textures and suppresses noise using a multiple scale oriented filterbank and a distributed Adaptive Resonance Theory (dART) classifier. The matched signal between the bottom-up texture inputs and top-down learned texture categories is utilized by oriented competitive and cooperative grouping processes to generate texture boundaries that control surface filling-in and spatial attention. Topdown modulatory attentional feedback from boundary and surface representations to early filtering stages results in enhanced texture boundaries and more efficient learning of texture within attended surface regions. Surface-based attention also provides a self-supervising training signal for learning new textures. Importance of the surface-based attentional feedback in texture learning and classification is tested using a set of textured images from the Brodatz micro-texture album. Benchmark studies vary from 95.1% to 98.6% with attention, and from 90.6% to 93.2% without attention.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A key goal of computational neuroscience is to link brain mechanisms to behavioral functions. The present article describes recent progress towards explaining how laminar neocortical circuits give rise to biological intelligence. These circuits embody two new and revolutionary computational paradigms: Complementary Computing and Laminar Computing. Circuit properties include a novel synthesis of feedforward and feedback processing, of digital and analog processing, and of pre-attentive and attentive processing. This synthesis clarifies the appeal of Bayesian approaches but has a far greater predictive range that naturally extends to self-organizing processes. Examples from vision and cognition are summarized. A LAMINART architecture unifies properties of visual development, learning, perceptual grouping, attention, and 3D vision. A key modeling theme is that the mechanisms which enable development and learning to occur in a stable way imply properties of adult behavior. It is noted how higher-order attentional constraints can influence multiple cortical regions, and how spatial and object attention work together to learn view-invariant object categories. In particular, a form-fitting spatial attentional shroud can allow an emerging view-invariant object category to remain active while multiple view categories are associated with it during sequences of saccadic eye movements. Finally, the chapter summarizes recent work on the LIST PARSE model of cognitive information processing by the laminar circuits of prefrontal cortex. LIST PARSE models the short-term storage of event sequences in working memory, their unitization through learning into sequence, or list, chunks, and their read-out in planned sequential performance that is under volitional control. LIST PARSE provides a laminar embodiment of Item and Order working memories, also called Competitive Queuing models, that have been supported by both psychophysical and neurobiological data. These examples show how variations of a common laminar cortical design can embody properties of visual and cognitive intelligence that seem, at least on the surface, to be mechanistically unrelated.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Under natural viewing conditions, a single depthful percept of the world is consciously seen. When dissimilar images are presented to corresponding regions of the two eyes, binocular rivalry may occur, during which the brain consciously perceives alternating percepts through time. Perceptual bistability can also occur in response to a single ambiguous figure. These percepts raise basic questions: What brain mechanisms generate a single depthful percept of the world? How do the same mechanisms cause perceptual bistability, notably binocular rivalry? What properties of brain representations correspond to consciously seen percepts? How do the dynamics of the layered circuits of visual cortex generate single and bistable percepts? A laminar cortical model of how cortical areas V1, V2, and V4 generate depthful percepts is developed to explain and quantitatively simulate binocular rivalry data. The model proposes how mechanisms of cortical development, perceptual grouping, and figure-ground perception lead to single and rivalrous percepts.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The human urge to represent the three-dimensional world using two-dimensional pictorial representations dates back at least to Paleolithic times. Artists from ancient to modern times have struggled to understand how a few contours or color patches on a flat surface can induce mental representations of a three-dimensional scene. This article summarizes some of the recent breakthroughs in scientifically understanding how the brain sees that shed light on these struggles. These breakthroughs illustrate how various artists have intuitively understand paradoxical properties about how the brain sees, and have used that understanding to create great art. These paradoxical properties arise from how the brain forms the units of conscious visual perception; namely, representations of three-dimensional boundaries and surfaces. Boundaries and surfaces are computed in parallel cortical processing streams that obey computationally complementary properties. These streams interact at multiple levels to overcome their complementary weaknesses and to transform their complementary properties into consistent percepts. The article describes how properties of complementary consistency have guided the creation of many great works of art.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

How do our brains transform the "blooming buzzing confusion" of daily experience into a coherent sense of self that can learn and selectively attend to important information? How do local signals at multiple processing stages, none of which has a global view of brain dynamics or behavioral outcomes, trigger learning at multiple synaptic sites when appropriate, and prevent learning when inappropriate, to achieve useful behavioral goals in a continually changing world? How does the brain allow synaptic plasticity at a remarkably rapid rate, as anyone who has gone to an exciting movie is readily aware, yet also protect useful memories from catastrophic forgetting? A neural model provides a unified answer by explaining and quantitatively simulating data about single cell biophysics and neurophysiology, laminar neuroanatomy, aggregate cell recordings (current-source densities, local field potentials), large-scale oscillations (beta, gamma), and spike-timing dependent plasticity, and functionally linking them all to cognitive information processing requirements.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

When we look at a scene, how do we consciously see surfaces infused with lightness and color at the correct depths? Random Dot Stereograms (RDS) probe how binocular disparity between the two eyes can generate such conscious surface percepts. Dense RDS do so despite the fact that they include multiple false binocular matches. Sparse stereograms do so even across large contrast-free regions with no binocular matches. Stereograms that define occluding and occluded surfaces lead to surface percepts wherein partially occluded textured surfaces are completed behind occluding textured surfaces at a spatial scale much larger than that of the texture elements themselves. Earlier models suggest how the brain detects binocular disparity, but not how RDS generate conscious percepts of 3D surfaces. A neural model predicts how the layered circuits of visual cortex generate these 3D surface percepts using interactions between visual boundary and surface representations that obey complementary computational rules.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A new neural network architecture is introduced for incremental supervised learning of recognition categories and multidimensional maps in response to arbitrary sequences of analog or binary input vectors. The architecture, called Fuzzy ARTMAP, achieves a synthesis of fuzzy logic and Adaptive Resonance Theory (ART) neural networks by exploiting a close formal similarity between the computations of fuzzy subsethood and ART category choice, resonance, and learning. Fuzzy ARTMAP also realizes a new Minimax Learning Rule that conjointly minimizes predictive error and maximizes code compression, or generalization. This is achieved by a match tracking process that increases the ART vigilance parameter by the minimum amount needed to correct a predictive error. As a result, the system automatically learns a minimal number of recognition categories, or "hidden units", to met accuracy criteria. Category proliferation is prevented by normalizing input vectors at a preprocessing stage. A normalization procedure called complement coding leads to a symmetric theory in which the MIN operator (Λ) and the MAX operator (v) of fuzzy logic play complementary roles. Complement coding uses on-cells and off-cells to represent the input pattern, and preserves individual feature amplitudes while normalizing the total on-cell/off-cell vector. Learning is stable because all adaptive weights can only decrease in time. Decreasing weights correspond to increasing sizes of category "boxes". Smaller vigilance values lead to larger category boxes. Improved prediction is achieved by training the system several times using different orderings of the input set. This voting strategy can also be used to assign probability estimates to competing predictions given small, noisy, or incomplete training sets. Four classes of simulations illustrate Fuzzy ARTMAP performance as compared to benchmark back propagation and genetic algorithm systems. These simulations include (i) finding points inside vs. outside a circle; (ii) learning to tell two spirals apart; (iii) incremental approximation of a piecewise continuous function; and (iv) a letter recognition database. The Fuzzy ARTMAP system is also compared to Salzberg's NGE system and to Simpson's FMMC system.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A neural model is described of how adaptively timed reinforcement learning occurs. The adaptive timing circuit is suggested to exist in the hippocampus, and to involve convergence of dentate granule cells on CA3 pyramidal cells, and NMDA receptors. This circuit forms part of a model neural system for the coordinated control of recognition learning, reinforcement learning, and motor learning, whose properties clarify how an animal can learn to acquire a delayed reward. Behavioral and neural data are summarized in support of each processing stage of the system. The relevant anatomical sites are in thalamus, neocortex, hippocampus, hypothalamus, amygdala, and cerebellum. Cerebellar influences on motor learning are distinguished from hippocampal influences on adaptive timing of reinforcement learning. The model simulates how damage to the hippocampal formation disrupts adaptive timing, eliminates attentional blocking, and causes symptoms of medial temporal amnesia. It suggests how normal acquisition of subcortical emotional conditioning can occur after cortical ablation, even though extinction of emotional conditioning is retarded by cortical ablation. The model simulates how increasing the duration of an unconditioned stimulus increases the amplitude of emotional conditioning, but does not change adaptive timing; and how an increase in the intensity of a conditioned stimulus "speeds up the clock", but an increase in the intensity of an unconditioned stimulus does not. Computer simulations of the model fit parametric conditioning data, including a Weber law property and an inverted U property. Both primary and secondary adaptively timed conditioning are simulated, as are data concerning conditioning using multiple interstimulus intervals (ISIs), gradually or abruptly changing ISis, partial reinforcement, and multiple stimuli that lead to time-averaging of responses. Neurobiologically testable predictions are made to facilitate further tests of the model.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A neural network realization of the fuzzy Adaptive Resonance Theory (ART) algorithm is described. Fuzzy ART is capable of rapid stable learning of recognition categories in response to arbitrary sequences of analog or binary input patterns. Fuzzy ART incorporates computations from fuzzy set theory into the ART 1 neural network, which learns to categorize only binary input patterns, thus enabling the network to learn both analog and binary input patterns. In the neural network realization of fuzzy ART, signal transduction obeys a path capacity rule. Category choice is determined by a combination of bottom-up signals and learned category biases. Top-down signals impose upper bounds on feature node activations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

How do human observers perceive a coherent pattern of motion from a disparate set of local motion measures? Our research has examined how ambiguous motion signals along straight contours are spatially integrated to obtain a globally coherent perception of motion. Observers viewed displays containing a large number of apertures, with each aperture containing one or more contours whose orientations and velocities could be independently specified. The total pattern of the contour trajectories across the individual apertures was manipulated to produce globally coherent motions, such as rotations, expansions, or translations. For displays containing only straight contours extending to the circumferences of the apertures, observers' reports of global motion direction were biased whenever the sampling of contour orientations was asymmetric relative to the direction of motion. Performance was improved by the presence of identifiable features, such as line ends or crossings, whose trajectories could be tracked over time. The reports of our observers were consistent with a pooling process involving a vector average of measures of the component of velocity normal to contour orientation, rather than with the predictions of the intersection-of-constraints analysis in velocity space.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A working memory model is described that is capable of storing and recalling arbitrary temporal sequences of events, including repeated items. These memories encode the invariant temporal order of sequential events that may be presented at widely differing speeds, durations, and interstimulus intervals. This temporal order code is designed to enable all possible groupings of sequential events to be stably learned and remembered in real time, even as new events perturb the system.