18 resultados para University normalization


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Two new notions of reduction for terms of the λ-calculus are introduced and the question of whether a λ-term is beta-strongly normalizing is reduced to the question of whether a λ-term is merely normalizing under one of the new notions of reduction. This leads to a new way to prove beta-strong normalization for typed λ-calculi. Instead of the usual semantic proof style based on Girard's "candidats de réductibilité'', termination can be proved using a decreasing metric over a well-founded ordering in a style more common in the field of term rewriting. This new proof method is applied to the simply-typed λ-calculus and the system of intersection types.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This is an addendum to our technical report BUCS TR-94-014 of December 19, 1994. It clarifies some statements, adds information on some related research, includes a comparison with research be de Groote, and fixes two minor mistakes in a proof.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Auditory signals of speech are speaker-dependent, but representations of language meaning are speaker-independent. Such a transformation enables speech to be understood from different speakers. A neural model is presented that performs speaker normalization to generate a pitchindependent representation of speech sounds, while also preserving information about speaker identity. This speaker-invariant representation is categorized into unitized speech items, which input to sequential working memories whose distributed patterns can be categorized, or chunked, into syllable and word representations. The proposed model fits into an emerging model of auditory streaming and speech categorization. The auditory streaming and speaker normalization parts of the model both use multiple strip representations and asymmetric competitive circuits, thereby suggesting that these two circuits arose from similar neural designs. The normalized speech items are rapidly categorized and stably remembered by Adaptive Resonance Theory circuits. Simulations use synthesized steady-state vowels from the Peterson and Barney [J. Acoust. Soc. Am. 24, 175-184 (1952)] vowel database and achieve accuracy rates similar to those achieved by human listeners. These results are compared to behavioral data and other speaker normalization models.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A procedure that uses fuzzy ARTMAP and K-Nearest Neighbor (K-NN) categorizers to evaluate intrinsic and extrinsic speaker normalization methods is described. Each classifier is trained on preprocessed, or normalized, vowel tokens from about 30% of the speakers of the Peterson-Barney database, then tested on data from the remaining speakers. Intrinsic normalization methods included one nonscaled, four psychophysical scales (bark, bark with end-correction, mel, ERB), and three log scales, each tested on four different combinations of the fundamental (Fo) and the formants (F1 , F2, F3). For each scale and frequency combination, four extrinsic speaker adaptation schemes were tested: centroid subtraction across all frequencies (CS), centroid subtraction for each frequency (CSi), linear scale (LS), and linear transformation (LT). A total of 32 intrinsic and 128 extrinsic methods were thus compared. Fuzzy ARTMAP and K-NN showed similar trends, with K-NN performing somewhat better and fuzzy ARTMAP requiring about 1/10 as much memory. The optimal intrinsic normalization method was bark scale, or bark with end-correction, using the differences between all frequencies (Diff All). The order of performance for the extrinsic methods was LT, CSi, LS, and CS, with fuzzy AHTMAP performing best using bark scale with Diff All; and K-NN choosing psychophysical measures for all except CSi.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Intrinsic and extrinsic speaker normalization methods are systematically compared using a neural network (fuzzy ARTMAP) and L1 and L2 K-Nearest Neighbor (K-NN) categorizers trained and tested on disjoint sets of speakers of the Peterson-Barney vowel database. Intrinsic methods include one nonscaled, four psychophysical scales (bark, bark with endcorrection, mel, ERB), and three log scales, each tested on four combinations of F0 , F1, F2, F3. Extrinsic methods include four speaker adaptation schemes, each combined with the 32 intrinsic methods: centroid subtraction across all frequencies (CS), centroid subtraction for each frequency (CSi), linear scale (LS), and linear transformation (LT). ARTMAP and KNN show similar trends, with K-NN performing better, but requiring about ten times as much memory. The optimal intrinsic normalization method is bark scale, or bark with endcorrection, using the differences between all frequencies (Diff All). The order of performance for the extrinsic methods is LT, CSi, LS, and CS, with fuzzy ARTMAP performing best using bark scale with Diff All; and K-NN choosing psychophysical measures for all except CSi.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This dissertation, an exercise in practical theology, consists of a critical conversation between the evangelistic practice of Campus Crusade for Christ in two American university contexts, Bryan Stone's ecclesiologically grounded theology of evangelism, and William Abraham's eschatologically grounded theology of evangelism. It seeks to provide these evangelizing communities several strategic proposals for a more ecclesiologically and eschatologically grounded practice of evangelism within a university context. The current literature on evangelism is long on evangelistic strategy and activity, but short on theological analysis and reflection. This study focuses on concrete practices, but is grounded in a thick description of two particular contexts (derived from qualitative research methods) and a theological analysis of the ecclesiological and eschatological beliefs embedded within their evangelistic activities. The dissertation provides an historical overview of important figures, ideas, and events that helped mold the practice of evangelism inherited by the two ministries of this study, beginning with the famous Haystack Revival on Williams College in 1806. Both ministries, Campus Crusade for Christ at Bowling Green State University (Ohio) and at Washington State University, inherited an evangelistic practice sorely infected with many of the classic distortions that both Abraham and Stone attempt to correct. Qualitative research methods detail the direction that Campus Crusade for Christ at Bowling Green State University (Ohio) and Washington State University have taken the practice of evangelism they inherited. Applying the analytical categories that emerge from a detailed summary of Stone and Abraham to qualitative data of these two ministries reveals several ways evangelism has morphed in a manner sympathetic to Stone's insistence that the central logic of evangelism is the embodied witness of the church. The results of this analysis reveal the subversive and pervasive influence of modernity on these evangelizing communities—an influence that warrants several corrective strategic proposals including: 1) re-situating evangelism within a reading of the biblical narrative that emphasizes the present, social, public, and realized nature of the gospel of the kingdom of God rather than simply its future, personal, private, and unrealized dimensions; 2) clarifying the nature of the evangelizing communities and their relationship to the church; and 3) emphasizing the virtues that characterize a new evangelistic exemplar who is incarnational, intentional, humble, and courageous.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A listing of graduate of Boston University School of Theology and predecessor school. Arranged by class year, alphabetical by last name and geographically by region.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A working paper for discussion

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We define a unification problem ^UP with the property that, given a pure lambda-term M, we can derive an instance Gamma(M) of ^UP from M such that Gamma(M) has a solution if and only if M is beta-strongly normalizable. There is a type discipline for pure lambda-terms that characterizes beta-strong normalization; this is the system of intersection types (without a "top" type that can be assigned to every lambda-term). In this report, we use a lean version LAMBDA of the usual system of intersection types. Hence, ^UP is also an appropriate unification problem to characterize typability of lambda-terms in LAMBDA. It also follows that ^UP is an undecidable problem, which can in turn be related to semi-unification and second-order unification (both known to be undecidable).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

System F is a type system that can be seen as both a proof system for second-order propositional logic and as a polymorphic programming language. In this work we explore several extensions of System F by types which express subtyping constraints. These systems include terms which represent proofs of subtyping relationships between types. Given a proof that one type is a subtype of another, one may use a coercion term constructor to coerce terms from the first type to the second. The ability to manipulate type constraints as first-class entities gives these systems a lot of expressive power, including the ability to encode generalized algebraic data types and intensional type analysis. The main contributions of this work are in the formulation of constraint types and a proof of strong normalization for an extension of System F with constraint types.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper formally defines the operational semantic for TRAFFIC, a specification language for flow composition applications proposed in BUCS-TR-2005-014, and presents a type system based on desired safety assurance. We provide proofs on reduction (weak-confluence, strong-normalization and unique normal form), on soundness and completeness of type system with respect to reduction, and on equivalence classes of flow specifications. Finally, we provide a pseudo-code listing of a syntax-directed type checking algorithm implementing rules of the type system capable of inferring the type of a closed flow specification.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The What-and-Where filter forms part of a neural network architecture for spatial mapping, object recognition, and image understanding. The Where fllter responds to an image figure that has been separated from its background. It generates a spatial map whose cell activations simultaneously represent the position, orientation, ancl size of all tbe figures in a scene (where they are). This spatial map may he used to direct spatially localized attention to these image features. A multiscale array of oriented detectors, followed by competitve and interpolative interactions between position, orientation, and size scales, is used to define the Where filter. This analysis discloses several issues that need to be dealt with by a spatial mapping system that is based upon oriented filters, such as the role of cliff filters with and without normalization, the double peak problem of maximum orientation across size scale, and the different self-similar interpolation properties across orientation than across size scale. Several computationally efficient Where filters are proposed. The Where filter rnay be used for parallel transformation of multiple image figures into invariant representations that are insensitive to the figures' original position, orientation, and size. These invariant figural representations form part of a system devoted to attentive object learning and recognition (what it is). Unlike some alternative models where serial search for a target occurs, a What and Where representation can he used to rapidly search in parallel for a desired target in a scene. Such a representation can also be used to learn multidimensional representations of objects and their spatial relationships for purposes of image understanding. The What-and-Where filter is inspired by neurobiological data showing that a Where processing stream in the cerebral cortex is used for attentive spatial localization and orientation, whereas a What processing stream is used for attentive object learning and recognition.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A neural model of peripheral auditory processing is described and used to separate features of coarticulated vowels and consonants. After preprocessing of speech via a filterbank, the model splits into two parallel channels, a sustained channel and a transient channel. The sustained channel is sensitive to relatively stable parts of the speech waveform, notably synchronous properties of the vocalic portion of the stimulus it extends the dynamic range of eighth nerve filters using coincidence deteectors that combine operations of raising to a power, rectification, delay, multiplication, time averaging, and preemphasis. The transient channel is sensitive to critical features at the onsets and offsets of speech segments. It is built up from fast excitatory neurons that are modulated by slow inhibitory interneurons. These units are combined over high frequency and low frequency ranges using operations of rectification, normalization, multiplicative gating, and opponent processing. Detectors sensitive to frication and to onset or offset of stop consonants and vowels are described. Model properties are characterized by mathematical analysis and computer simulations. Neural analogs of model cells in the cochlear nucleus and inferior colliculus are noted, as are psychophysical data about perception of CV syllables that may be explained by the sustained transient channel hypothesis. The proposed sustained and transient processing seems to be an auditory analog of the sustained and transient processing that is known to occur in vision.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Adaptive Resonance Theory (ART) models are real-time neural networks for category learning, pattern recognition, and prediction. Unsupervised fuzzy ART and supervised fuzzy ARTMAP synthesize fuzzy logic and ART networks by exploiting the formal similarity between the computations of fuzzy subsethood and the dynamics of ART category choice, search, and learning. Fuzzy ART self-organizes stable recognition categories in response to arbitrary sequences of analog or binary input patterns. It generalizes the binary ART 1 model, replacing the set-theoretic: intersection (∩) with the fuzzy intersection (∧), or component-wise minimum. A normalization procedure called complement coding leads to a symmetric: theory in which the fuzzy inter:>ec:tion and the fuzzy union (∨), or component-wise maximum, play complementary roles. Complement coding preserves individual feature amplitudes while normalizing the input vector, and prevents a potential category proliferation problem. Adaptive weights :otart equal to one and can only decrease in time. A geometric interpretation of fuzzy AHT represents each category as a box that increases in size as weights decrease. A matching criterion controls search, determining how close an input and a learned representation must be for a category to accept the input as a new exemplar. A vigilance parameter (p) sets the matching criterion and determines how finely or coarsely an ART system will partition inputs. High vigilance creates fine categories, represented by small boxes. Learning stops when boxes cover the input space. With fast learning, fixed vigilance, and an arbitrary input set, learning stabilizes after just one presentation of each input. A fast-commit slow-recode option allows rapid learning of rare events yet buffers memories against recoding by noisy inputs. Fuzzy ARTMAP unites two fuzzy ART networks to solve supervised learning and prediction problems. A Minimax Learning Rule controls ARTMAP category structure, conjointly minimizing predictive error and maximizing code compression. Low vigilance maximizes compression but may therefore cause very different inputs to make the same prediction. When this coarse grouping strategy causes a predictive error, an internal match tracking control process increases vigilance just enough to correct the error. ARTMAP automatically constructs a minimal number of recognition categories, or "hidden units," to meet accuracy criteria. An ARTMAP voting strategy improves prediction by training the system several times using different orderings of the input set. Voting assigns confidence estimates to competing predictions given small, noisy, or incomplete training sets. ARPA benchmark simulations illustrate fuzzy ARTMAP dynamics. The chapter also compares fuzzy ARTMAP to Salzberg's Nested Generalized Exemplar (NGE) and to Simpson's Fuzzy Min-Max Classifier (FMMC); and concludes with a summary of ART and ARTMAP applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Adaptive Resonance Theory (ART) models are real-time neural networks for category learning, pattern recognition, and prediction. Unsupervised fuzzy ART and supervised fuzzy ARTMAP networks synthesize fuzzy logic and ART by exploiting the formal similarity between tile computations of fuzzy subsethood and the dynamics of ART category choice, search, and learning. Fuzzy ART self-organizes stable recognition categories in response to arbitrary sequences of analog or binary input patterns. It generalizes the binary ART 1 model, replacing the set-theoretic intersection (∩) with the fuzzy intersection(∧), or component-wise minimum. A normalization procedure called complement coding leads to a symmetric theory in which the fuzzy intersection and the fuzzy union (∨), or component-wise maximum, play complementary roles. A geometric interpretation of fuzzy ART represents each category as a box that increases in size as weights decrease. This paper analyzes fuzzy ART models that employ various choice functions for category selection. One such function minimizes total weight change during learning. Benchmark simulations compare peformance of fuzzy ARTMAP systems that use different choice functions.