3 resultados para Muscle Pyruvate-kinase

em Abertay Research Collections - Abertay University’s repository


Relevância:

40.00% 40.00%

Publicador:

Resumo:

G6PC3 is a widely expressed isoform of glucose-6-phosphatase, found in many foetal and adult tissues. Mutations in this gene cause developmental abnormalities and severe neutropenia due to abolition of glucose recycling between the cytoplasm and endoplasmic reticulum. Low G6PC3 expression as a result of promoter polymorphisms or dysregulation could produce similar outcomes. Here we investigated the regulation of human G6PC3 promoter activity. HeLa and H4IIE cells were transiently transfected with G6PC3 promoter coupled to the firefly luciferase gene, and promoter activity was measured by dual luciferase assay. Activity was highest in a 453 bp segment of the G6PC3 promoter, from − 455 to − 3 relative to the transcriptional start site. This promoter was unresponsive to glucostatic hormones. Its activity increased significantly between 1 and 5.5 mM glucose, and was not elevated further by glucose concentrations up to 25 mM. Pyruvate increased its activity, but β-hydroxybutyrate and sodium acetate did not. Promoter activity was reduced by inhibitors of hexokinase, glyceraldehyde phosphate dehydrogenase and the oxidative branch of the pentose phosphate pathway, but not by a transketolase inhibitor. Deletion of two adjacent Enhancer-boxes (− 274 to − 279 and − 299 to − 304) reduced promoter activity and abolished the glucose effect, suggesting they could function as a glucose response element. Deletion of an additional downstream 140 bp (− 140 to − 306) restored activity, but not the glucose response, suggesting the presence of repressor elements in this region. 5-Aminoimidazole-4-carboxamide 1-β-d-ribofuranoside (AICAR) reduced promoter activity, showing dependence on AMP-kinase. Regulation of the G6PC3 promoter is thus radically different to that of the hepatic isoform, G6PC. It is sensitive to carbohydrate, but not to fatty acid metabolites, and at much lower physiological concentrations. Based on these findings, we speculate that reduced G6PC3 expression could occur during hypoglycemic episodes in vivo, which are common in utero and in the postnatal period. If such episodes lower G6PC3 expression they could place the foetus or infant at risk of impaired immune function and development, and this possibility requires further examination both in vitro and in vivo.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Musculoskeletal ageing is associated with profound morphological and functional changes that increase fall risk and disease incidence and is characterised by age-related reductions in motor unit number and atrophy of muscle fibres, particularly type II fibres. Decrements in functional strength and power are relatively modest until the 6th decade, after which the rate of loss exponentially accelerates, particularly beyond the 8th decade of life. Physical activity is a therapeutic modality that can significantly attenuate age-related decline. The underlying signature of ageing, as manifested by perturbed redox homeostasis, leads to a blunting of acute and chronic redox regulated exercise adaptations. Impaired redox regulated exercise adaptations are mechanistically related to altered exercise-induced reactive oxygen and nitrogen species generation and a resultant failure to properly activate redox regulated signaling cascades. Despite the aforementioned specific impairment in redox signaling, exercise induces a plethora of beneficial effects, irrespective of age. There is, therefore, strong evidence for promoting regular physical exercise, especially progressive resistance training as a lifelong habitual practice.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Traditional methods for phenotyping skeletal muscle (e.g., immunohistochemistry) are labor-intensive and ill-suited to multixplex analysis, i.e., assays must be performed in a series. Addressing these concerns represents a largely unmet research need but more comprehensive parallel analysis of myofibrillar proteins could advance knowledge regarding age- and activity-dependent changes in human muscle. We report a label-free, semi-automated and time efficient LC-MS proteomic workflow for phenotyping the myofibrillar proteome. Application of this workflow in old and young as well as trained and untrained human skeletal muscle yielded several novel observations that were subsequently verified by multiple reaction monitoring (MRM).We report novel data demonstrating that human ageing is associated with lesser myosin light chain 1 content and greater myosin light chain 3 content, consistent with an age-related reduction in type II muscle fibers. We also disambiguate conflicting data regarding myosin regulatory light chain, revealing that age-related changes in this protein more closely reflect physical activity status than ageing per se. This finding reinforces the need to control for physical activity levels when investigating the natural process of ageing. Taken together, our data confirm and extend knowledge regarding age- and activity-related phenotypes. In addition, the MRM transitions described here provide a methodological platform that can be fine-tuned to suite multiple research needs and thus advance myofibrillar phenotyping.