5 resultados para clinical exercise

em ABACUS. Repositorio de Producción Científica - Universidad Europea


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Chronic graft-versus-host disease (cGVHD) is a frequent cause of morbimortality after allogeneic hematopoietic stem cell transplantation (allo-HSCT), and severely compromises patients' physical capacity. Despite the aggressive nature of the disease, aerobic exercise training can positively impact survival as well as clinical and functional parameters. We analyzed potential mechanisms underlying the recently reported cardiac function improvement in an exercise-trained cGVHD murine model receiving lethal total body irradiation and immunosuppressant treatment (Fiuza-Luces et al., 2013. Med Sci Sports Exerc 45, 1703-1711). We hypothesized that a cellular quality-control mechanism that is receiving growing attention in biomedicine, autophagy, was involved in such improvement. Our results suggest that exercise training elicits a positive autophagic adaptation in the myocardium that may help preserve cardiac function even at the end-stage of a devastating disease like cGVHD. These preliminary findings might provide new insights into the cardiac exercise benefits in chronic/debilitating conditions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The extremes of exercise capacity and health are considered a complex interplay between genes and the environment. In general, the study of animal models has proven critical for deep mechanistic exploration that provides guidance for focused and hypothesis driven discovery in humans. Hypotheses underlying molecular mechanisms of disease, and gene/tissue function can be tested in rodents in order to generate sufficient evidence to resolve and progress our understanding of human biology. Here we provide examples of three alternative uses of rodent models that have been applied successfully to advance knowledge that bridges our understanding of the connection between exercise capacity and health status. Firstly we review the strong association between exercise capacity and all-cause morbidity and mortality in humans through artificial selection on low and high exercise performance in the rat and the consequent generation of the "energy transfer hypothesis". Secondly we review specific transgenic and knock-out mouse models that replicate the human disease condition and performance. This includes human glycogen storage diseases (McArdle and Pompe) and α-actinin-3 deficiency. Together these rodent models provide an overview of the advancements of molecular knowledge required for clinical translation. Continued study of these models in conjunction with human association studies will be critical to resolving the complex gene-environment interplay linking exercise capacity, health, and disease.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Exercise improves functional capacity in spinal cord injury (SCI). However, exhaustive exercise, especially when sporadic, is linked to the production of reactive oxygen species that may have a detrimental effect on SCI. We aimed to study the effect of a single bout of exhaustive exercise on systemic oxidative stress parameters and on the expression of antioxidant enzymes in individuals with paraplegia. The study was conducted in the Physical Therapy department and the Physical Education and Sports department of the University of Valencia. Sixteen paraplegic subjects were submitted to a graded exercise test (GET) until volitional exhaustion. They were divided into active or non-active groups. Blood samples were drawn immediately, 1 and 2 h after the GET. We determined plasma malondialdehyde (MDA) and protein carbonylation as markers of oxidative damage. Antioxidant gene expression (catalase and glutathione peroxidase-GPx) was determined in peripheral blood mononuclear cells. We found a significant increase in plasma MDA and protein carbonyls immediately after the GET (P<0.05). This increment correlated significantly with the lactate levels. Active paraplegics showed lower levels of exercise-induced oxidative damage (P<0.05) and higher exercise-induced catalase (P<0.01) and GPx (P<0.05) gene expression after the GET. These results suggest that exercise training may be useful in SCI patients to develop systemic antioxidant defenses that may protect them against exercise-induced oxidative damage.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The association of an excessive blood pressure increase with exercise (EBPIE) on cardiovascular outcomes remains controversial. We sought to assess its impact on the risk of all-cause mortality and major cardiac events in patients with known or suspected coronary artery disease (CAD) referred for stress testing. Exercise echocardiography was performed in 10,047 patients with known or suspected CAD. An EBPIE was defined as an increase in systolic blood pressure with exercise ≥80 mmHg. The endpoints were all-cause mortality and major cardiac events (MACE), including cardiac death or nonfatal myocardial infarction (MI). Overall, 573 patients exhibited an EBPIE during the tests. Over a mean follow-up of 4.8 years, there were 1,950 deaths (including 725 cardiac deaths), 1,477 MI, and 1,900 MACE. The cumulative 10-year rates of all-cause mortality, cardiac death, nonfatal MI and MACE were 32.9%, 13.1%, 26,9% and 33% in patients who did not develop an EBPIE vs. 18.9%, 4.7%, 17.5% and 20.7% in those experiencing an EBPIE, respectively (p <0.001 for all comparisons). In Cox regression analyses, an EBPIE remained predictive of all-cause mortality (hazard ratio [HR] 0.73, 95% confidence interval [CI] 0.59-0.91, p = 0.004), cardiac death (HR 0.67, 95% CI 0.46-0.98, p = 0.04), MI (HR 0.67, 95% CI 0.52-0.86, p = 0.002), and MACE (HR 0.69, 95% CI 0.56-0.86, p = 0.001). An EBPIE was associated with a significantly lower risk of mortality and MACE in patients with known or suspected CAD referred for stress testing.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objectives—Exercise is known to cause changes in the concentration of salivary components such as amylase, Na, and Cl. The aim of this investigation was to evaluate the eVect of physical exercise on the levels of trace elements and electrolytes in whole (mixed) saliva. Methods—Forty subjects performed a maximal exercise test on a cycle ergometer. Samples of saliva were obtained before and immediately after the exercise test. Sample concentrations of Fe, Mg, Sc, Cr, Mn, Co, Cu, Zn, Se, Sr, Ag, Sb, Cs, and Hg were determined by inductively coupled plasma mass spectrometry and concentrations of Ca and Na by atomic absorption spectrometry. Results—After exercise, Mg and Na levels showed a significant increase (p<0.05) while Mn levels fell (p<0.05). Zn/Cu molar ratios were unaVected by exercise. Conclusions—Intense physical exercise induced changes in the concentrations of only three (Na, Mg, and Mn) of the 16 elements analysed in the saliva samples. Further research is needed to assess the clinical implications of these findings.