9 resultados para breathing exercise

em ABACUS. Repositorio de Producción Científica - Universidad Europea


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim is to critically review the more relevant evidence on the interrelationships between exercise and metabolic outcomes. The research questions addressed in the recent specific literature with the most relevant randomized controlled trials, meta-analysis and cohort studies are presented in three domains: aerobic exercise, resistance exercise, combined aerobic and resistance exercise. From this review appear that the effects of aerobic exercise are well established, and interventions with more vigorous aerobic exercise programs resulted in greater reductions in HbA1c, greater increase in VO2max and greater increase in insulin sensitivity. Considering the available evidence, it appears that resistance training could be an effective intervention to help glycemic control, especially considering that the effects of this form of intervention are comparable with what reported with aerobic exercise. Less studies have investigated whether combined resistance and aerobic training offers a synergistic and incremental effect on glycemic control; however, from the available evidences appear that combined exercise training seems to determine additional change in HbA1c that can be seen significant if compared with aerobic training alone and resistance training alone.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Chronic graft-versus-host disease (cGVHD) is a frequent cause of morbimortality after allogeneic hematopoietic stem cell transplantation (allo-HSCT), and severely compromises patients' physical capacity. Despite the aggressive nature of the disease, aerobic exercise training can positively impact survival as well as clinical and functional parameters. We analyzed potential mechanisms underlying the recently reported cardiac function improvement in an exercise-trained cGVHD murine model receiving lethal total body irradiation and immunosuppressant treatment (Fiuza-Luces et al., 2013. Med Sci Sports Exerc 45, 1703-1711). We hypothesized that a cellular quality-control mechanism that is receiving growing attention in biomedicine, autophagy, was involved in such improvement. Our results suggest that exercise training elicits a positive autophagic adaptation in the myocardium that may help preserve cardiac function even at the end-stage of a devastating disease like cGVHD. These preliminary findings might provide new insights into the cardiac exercise benefits in chronic/debilitating conditions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

2.241 JCR (2015) Q3, 140/213 Oncology, 45/80 Nutrition & dietetics

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The extremes of exercise capacity and health are considered a complex interplay between genes and the environment. In general, the study of animal models has proven critical for deep mechanistic exploration that provides guidance for focused and hypothesis driven discovery in humans. Hypotheses underlying molecular mechanisms of disease, and gene/tissue function can be tested in rodents in order to generate sufficient evidence to resolve and progress our understanding of human biology. Here we provide examples of three alternative uses of rodent models that have been applied successfully to advance knowledge that bridges our understanding of the connection between exercise capacity and health status. Firstly we review the strong association between exercise capacity and all-cause morbidity and mortality in humans through artificial selection on low and high exercise performance in the rat and the consequent generation of the "energy transfer hypothesis". Secondly we review specific transgenic and knock-out mouse models that replicate the human disease condition and performance. This includes human glycogen storage diseases (McArdle and Pompe) and α-actinin-3 deficiency. Together these rodent models provide an overview of the advancements of molecular knowledge required for clinical translation. Continued study of these models in conjunction with human association studies will be critical to resolving the complex gene-environment interplay linking exercise capacity, health, and disease.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Exercise may be described as a polypill to prevent and/or treat almost every chronic disease, with obvious benefits such as its low cost and practical lack of adverse effects. Implementing physical activity interventions in public health is therefore a goal at the medical, social, and economic levels. This chapter describes the importance of health promotion through physical activity and discusses the impacts of exercise on the most prevalent chronic diseases, namely metabolic syndrome-related disorders, cardiovascular diseases, cancer, and Alzheimer's disease. For each of these chronic conditions, we discuss the epidemiological evidence supporting a beneficial role of exercise, provide guidelines for exercise prescription, and describe the biological mechanisms whereby exercise exerts its modulatory effects.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Regular physical exercise provides many health benefits, protecting against the development of chronic diseases, and improving quality of life. Some of the mechanisms by which exercise provides these effects are the promotion of an anti-inflammatory state, reinforcement of the neuromuscular function, and activation of the hypothalamic–pituitary–adrenal (HPA) axis. Recently, it has been proposed that physical exercise is able to modify gut microbiota, and thus this could be another factor by which exercise promotes well-being, since gut microbiota appears to be closely related to health and disease. The purpose of this paper is to review the recent findings on gut microbiota modification by exercise, proposing several mechanisms by which physical exercise might cause changes in gut microbiota.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Exercise improves functional capacity in spinal cord injury (SCI). However, exhaustive exercise, especially when sporadic, is linked to the production of reactive oxygen species that may have a detrimental effect on SCI. We aimed to study the effect of a single bout of exhaustive exercise on systemic oxidative stress parameters and on the expression of antioxidant enzymes in individuals with paraplegia. The study was conducted in the Physical Therapy department and the Physical Education and Sports department of the University of Valencia. Sixteen paraplegic subjects were submitted to a graded exercise test (GET) until volitional exhaustion. They were divided into active or non-active groups. Blood samples were drawn immediately, 1 and 2 h after the GET. We determined plasma malondialdehyde (MDA) and protein carbonylation as markers of oxidative damage. Antioxidant gene expression (catalase and glutathione peroxidase-GPx) was determined in peripheral blood mononuclear cells. We found a significant increase in plasma MDA and protein carbonyls immediately after the GET (P<0.05). This increment correlated significantly with the lactate levels. Active paraplegics showed lower levels of exercise-induced oxidative damage (P<0.05) and higher exercise-induced catalase (P<0.01) and GPx (P<0.05) gene expression after the GET. These results suggest that exercise training may be useful in SCI patients to develop systemic antioxidant defenses that may protect them against exercise-induced oxidative damage.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Depression is a major medical and social problem. Here we review current body of knowledge on the benefits of exercise as an effective strategy for both the prevention and treatment of this condition. We also analyze the biological pathways involved in such potential benefits, which include changes in neurotrophic factors, oxidative stress and inflammation, telomere length, brain volume and microvessels, neurotransmitters or hormones. We also identify major caveats in this field of research: further studies are needed to identify which are the most appropriate types of exercise interventions (intensity, duration, or frequency) to treat and prevent depression.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We recently generated a knock-in mouse model (PYGM p.R50X/p.R50X) of McArdle disease (myophosphorylase deficiency). One mechanistic approach to unveil the molecular alterations caused by myophosphorylase deficiency, which is arguably the paradigm of 'exercise intolerance', is to compare the skeletal-muscle tissue of McArdle, heterozygous, and healthy (wild type (wt)) mice. We analyzed in quadriceps muscle of p.R50X/p.R50X (n=4), p.R50X/wt (n=6) and wt/wt mice (n=5) (all male, 8 wk-old) molecular markers of energy-sensing pathways, oxidative phosphorylation (OXPHOS) and autophagy/proteasome systems, oxidative damage and sarcoplamic reticulum (SR) Ca handling. We found a significant group effect for total AMPK (tAMPK) and ratio of phosphorylated (pAMPK)/tAMPK (P=0.012 and 0.033), with higher mean values in p.R50X/p.R50X mice vs. the other two groups. The absence of massive accumulation of ubiquitinated proteins, autophagosomes or lysosomes in p.R50X/p.R50X mice suggested no major alterations in autophagy/proteasome systems. Citrate synthase activity was lower in p.R50X/p.R50X mice vs. the other two groups (P=0.036) but no statistical effect existed for respiratory chain complexes. We found higher levels of 4-hydroxy-2-nonenal-modified proteins in p.R50X/p.R50X and p.R50X/wt mice compared with the wt/wt group (P=0.011). Sarco(endo)plasmic reticulum ATPase 1 (SERCA1) levels detected at 110kDa tended to be higher in p.R50X/p.R50X and p.R50X/wt mice compared with wt/wt animals (P=0.076), but their enzyme activity was normal. We also found an accumulation of phosphorylated SERCA1 in p.R50X/p.R50X animals. Myophosphorylase deficiency causes alterations in sensory energetic pathways together with some evidence of oxidative damage and alterations in Ca handling but with no major alterations in OXPHOS capacity or autophagy/ubiquitination pathways, which suggests that the muscle tissue of patients is likely to adapt overall favorably to exercise training interventions.