1 resultado para 230203 Statistical Theory
em ABACUS. Repositorio de Producción Científica - Universidad Europea
Filtro por publicador
- ABACUS. Repositorio de Producción Científica - Universidad Europea (1)
- Aberdeen University (2)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (7)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (1)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (3)
- Aston University Research Archive (21)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (1)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (70)
- Biodiversity Heritage Library, United States (17)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (5)
- Brock University, Canada (3)
- Bulgarian Digital Mathematics Library at IMI-BAS (5)
- CentAUR: Central Archive University of Reading - UK (15)
- CiencIPCA - Instituto Politécnico do Cávado e do Ave, Portugal (4)
- Cochin University of Science & Technology (CUSAT), India (1)
- Collection Of Biostatistics Research Archive (86)
- Consorci de Serveis Universitaris de Catalunya (CSUC), Spain (94)
- Cor-Ciencia - Acuerdo de Bibliotecas Universitarias de Córdoba (ABUC), Argentina (4)
- Dalarna University College Electronic Archive (3)
- Digital Commons at Florida International University (9)
- DigitalCommons - The University of Maine Research (1)
- DigitalCommons@The Texas Medical Center (2)
- Diposit Digital de la UB - Universidade de Barcelona (1)
- Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland (2)
- DRUM (Digital Repository at the University of Maryland) (1)
- eResearch Archive - Queensland Department of Agriculture; Fisheries and Forestry (1)
- Galway Mayo Institute of Technology, Ireland (1)
- Georgian Library Association, Georgia (2)
- Glasgow Theses Service (1)
- Greenwich Academic Literature Archive - UK (1)
- Illinois Digital Environment for Access to Learning and Scholarship Repository (1)
- Institute of Public Health in Ireland, Ireland (5)
- Institutional Repository of Leibniz University Hannover (1)
- Instituto Politécnico do Porto, Portugal (24)
- Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States (128)
- Martin Luther Universitat Halle Wittenberg, Germany (13)
- National Center for Biotechnology Information - NCBI (4)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (1)
- ReCiL - Repositório Científico Lusófona - Grupo Lusófona, Portugal (2)
- Repositório Alice (Acesso Livre à Informação Científica da Embrapa / Repository Open Access to Scientific Information from Embrapa) (1)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (17)
- Repositório da Escola Nacional de Administração Pública (ENAP) (2)
- Repositório da Produção Científica e Intelectual da Unicamp (7)
- Repositório digital da Fundação Getúlio Vargas - FGV (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (14)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (21)
- Scielo Saúde Pública - SP (34)
- Scottish Institute for Research in Economics (SIRE) (SIRE), United Kingdom (18)
- Universidad del Rosario, Colombia (2)
- Universidad Politécnica de Madrid (5)
- Universidade Complutense de Madrid (1)
- Universidade do Minho (7)
- Universidade dos Açores - Portugal (1)
- Universidade Técnica de Lisboa (1)
- Universitat de Girona, Spain (3)
- Université de Lausanne, Switzerland (79)
- Université de Montréal, Canada (7)
- University of Michigan (9)
- University of Queensland eSpace - Australia (213)
- University of Southampton, United Kingdom (1)
- WestminsterResearch - UK (1)
Resumo:
Data sources are often dispersed geographically in real life applications. Finding a knowledge model may require to join all the data sources and to run a machine learning algorithm on the joint set. We present an alternative based on a Multi Agent System (MAS): an agent mines one data source in order to extract a local theory (knowledge model) and then merges it with the previous MAS theory using a knowledge fusion technique. This way, we obtain a global theory that summarizes the distributed knowledge without spending resources and time in joining data sources. New experiments have been executed including statistical significance analysis. The results show that, as a result of knowledge fusion, the accuracy of initial theories is significantly improved as well as the accuracy of the monolithic solution.