2 resultados para Dynamic security assessment
em Repository Napier
Resumo:
Developing learning, teaching and assessment strategies that foster ongoing engagement and provide inspiration to academic staff is a particular challenge. This paper demonstrates how an institutional learning, teaching and assessment strategy was developed and a ‘dynamic’ strategy created in order to achieve the ongoing enhancement of the quality of the student learning experience. The authors use the discussion of the evolution, development and launch of the Strategy and underpinning Resource Bank to reflect on the hopes and intentions behind the approach; firstly the paper will discuss the collaborative and iterative approach taken to the development of an institutional learning, teaching and assessment strategy; and secondly, the development of open access educational resources to underpin the strategy. The paper then outlines staff engagement with the resource bank and positive outcomes which have been identified to date, identifies the next steps in achieving the ambition behind the strategy and outlines the action research and fuller evaluation which will be used to monitor progress and ensure responsive learning at institutional level.
Resumo:
Data leakage is a serious issue and can result in the loss of sensitive data, compromising user accounts and details, potentially affecting millions of internet users. This paper contributes to research in online security and reducing personal footprint by evaluating the levels of privacy provided by the Firefox browser. The aim of identifying conditions that would minimize data leakage and maximize data privacy is addressed by assessing and comparing data leakage in the four possible browsing modes: normal and private modes using a browser installed on the host PC or using a portable browser from a connected USB device respectively. To provide a firm foundation for analysis, a series of carefully designed, pre-planned browsing sessions were repeated in each of the various modes of Firefox. This included low RAM environments to determine any effects low RAM may have on browser data leakage. The results show that considerable data leakage may occur within Firefox. In normal mode, all of the browsing information is stored within the Mozilla profile folder in Firefox-specific SQLite databases and sessionstore.js. While passwords were not stored as plain text, other confidential information such as credit card numbers could be recovered from the Form history under certain conditions. There is no difference when using a portable browser in normal mode, except that the Mozilla profile folder is located on the USB device rather than the host's hard disk. By comparison, private browsing reduces data leakage. Our findings confirm that no information is written to the Firefox-related locations on the hard disk or USB device during private browsing, implying that no deletion would be necessary and no remnants of data would be forensically recoverable from unallocated space. However, two aspects of data leakage occurred equally in all four browsing modes. Firstly, all of the browsing history was stored in the live RAM and was therefore accessible while the browser remained open. Secondly, in low RAM situations, the operating system caches out RAM to pagefile.sys on the host's hard disk. Irrespective of the browsing mode used, this may include Firefox history elements which can then remain forensically recoverable for considerable time.