1 resultado para Mies van der Rohe, Ludwig (1886-1969)
em KUPS-Datenbank - Universität zu Köln - Kölner UniversitätsPublikationsServer
Filtro por publicador
- JISC Information Environment Repository (3)
- KUPS-Datenbank - Universität zu Köln - Kölner UniversitätsPublikationsServer (1)
- Repository Napier (1)
- ABACUS. Repositorio de Producción Científica - Universidad Europea (2)
- Aberystwyth University Repository - Reino Unido (2)
- Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España (3)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (1)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (1)
- Aquatic Commons (8)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (1)
- Archive of European Integration (28)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (3)
- Aston University Research Archive (5)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (2)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (1)
- Biblioteca Digital de la Universidad Católica Argentina (2)
- Biblioteca Digital de Teses e Dissertações Eletrônicas da UERJ (3)
- Biodiversity Heritage Library, United States (2)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (9)
- CaltechTHESIS (3)
- Cambridge University Engineering Department Publications Database (66)
- CentAUR: Central Archive University of Reading - UK (3)
- Center for Jewish History Digital Collections (3)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (56)
- CORA - Cork Open Research Archive - University College Cork - Ireland (7)
- DI-fusion - The institutional repository of Université Libre de Bruxelles (31)
- Digital Peer Publishing (6)
- DigitalCommons@University of Nebraska - Lincoln (1)
- Digitale Sammlungen - Goethe-Universität Frankfurt am Main (23)
- Duke University (4)
- eResearch Archive - Queensland Department of Agriculture; Fisheries and Forestry (5)
- Gallica, Bibliotheque Numerique - Bibliothèque nationale de France (French National Library) (BnF), France (1)
- Greenwich Academic Literature Archive - UK (1)
- Harvard University (1)
- Helda - Digital Repository of University of Helsinki (6)
- Indian Institute of Science - Bangalore - Índia (95)
- Instituto Politécnico do Porto, Portugal (2)
- Lume - Repositório Digital da Universidade Federal do Rio Grande do Sul (2)
- Open University Netherlands (7)
- Plymouth Marine Science Electronic Archive (PlyMSEA) (22)
- Portal de Revistas Científicas Complutenses - Espanha (10)
- Publishing Network for Geoscientific & Environmental Data (19)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (92)
- Queensland University of Technology - ePrints Archive (255)
- Repositorio Institucional de la Universidad Nacional Agraria (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (18)
- Savoirs UdeS : plateforme de diffusion de la production intellectuelle de l’Université de Sherbrooke - Canada (1)
- Universidad de Alicante (1)
- Universidad del Rosario, Colombia (7)
- Universidad Politécnica de Madrid (25)
- Universidade Metodista de São Paulo (1)
- Universitat de Girona, Spain (1)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (2)
- Université de Lausanne, Switzerland (1)
- University of Michigan (90)
- University of Queensland eSpace - Australia (7)
- WestminsterResearch - UK (1)
Resumo:
Die Voraussetzunen der parametrischen 1- und mehrfaktoriellen Varianzanalyse, mit und ohne Messwiederholungen, werden besprochen. Ferner werden eine Reihe von alternativen Verfahren vorgestellt, insbesondere einige nichtparametrische, darunter RT (rank transform), INT (inverse normal transform), ART (aligned rank transform), Puri & Sen (L statistic), van der Waerden und Akritas & Brunner (ATS anova type statistic), die sich auf die parametrische Varianzanalyse zurückführen lassen, sowie dichotome und ordinale logistische Regression. Hierzu werden Lösungen mit R und SPSS ausführlich gezeigt.