1 resultado para lidar
em Repositorio Institucional da UFLA (RIUFLA)
Resumo:
Biplot graphics are widely employed in the study of the genotypeenvironment interactions, but they are only a graphical tool without a statistical hypothesis test. The singular values and scores (singular vectors) used in biplots correspond to specific estimates of its parameters, and the use of uncertainty measures may lead to different conclusions from those provided by a simple visual evaluation. The aim of this work is to estimate the genotype-environment interactions, using AMMI analysis, through Bayesian approach. Therefore the credibility intervals can be used for decision-making in different situations of analyses. It allows to verify the consistency of the selection and recommendation of cultivars. Two analyses were performed. The first analysis looked into 10 regular commercial hybrids and all possible 45 hybrids obtained from them. They were assessed in 15 locations. The second analysis evaluated 28 hybrids in 35 different environments, with imbalance data. The ellipses were grouped according to the standard of interaction in the biplot. The AMMI analysis with a Bayesian approach proved to be a complete analysis of stability and adaptability, which provides important information that may help the breeder in their decisions. The regions of credibility, built in the biplots, allow to perform an accurate selection and a precise genotype recommendation, with a level of credibility. Genotypes and environments can be grouped according to the existing interaction pattern, which makes possible to formulate specific recommendations. Moreover the environments can be evaluated, in order to find out which ones contribute similarly to the interaction and those to be discarted. The method makes possible to deal with imbalanced data in a natural way, showing efficiency for multienvironment trials. The prediction takes into account instability and the interaction standard of the observed data, in order to establish a direct comparison between genotypes of both 1st and 2nd seasons.