4 resultados para enzimas
em Repositorio Institucional da UFLA (RIUFLA)
Resumo:
Eryngium foetidum L., Eryngium cf. campestre and Coriandrum sativum L. are Apiaceae family vegetable appreciated due to its peculiar flavor and consumed mainly in the north and northeast of Brazil. The vegetables are rich in protein, vitamins, fiber, minerals, total phenolics and other essential bioactives for a balanced health. Nevertheless, many vegetables are falling into disuse by the population, instead of processed foods. The rescue consumption of these species is very important, aiming at their nutritional, therapeutic and antioxidant benefits. In this study, was quantified the levels of total phenolic, flavonoids and dihidroflavonoides by molecular absorption spectrophotometry in the ultraviolet. The total antioxidant capacity was also evaluated using five methodologies of in vitro assays: test Total Antioxidant Capacity (TAC), scavenging of DPPH and ABTS radical, Power Reducing and Power Chelating. It was also evaluated the power inhibitor of α-amylase and lipoxygenase extracts. All species showed significant levels of total phenolics, flavonoids and dihidroflavonoides in its composition. All treatments showed antioxidant activity of 50% except the sheets of E. cf. campestre, C. sativum and bracts of E. foetidum in DPPH and bracts of E. foetidum in ABTS. All treatments also exhibited 50% inhibition activity of the enzyme lipoxygenase.In α-amylase only the leaves of E. cf. campestre and C. sativum showed IC50. It was evaluate the phytochemical composition, aiming to meet the nutritional potential of Apiaceae family vegetables, called unconventional: Eryngium foetidum L., Eryngium cf. campestre; and conventional: Coriandrum sativum L. At the centesimal composition analysis Coriandrum sativum L. presented the highest levels of protein. The leaves of Eryngium foetidum L. exhibited higher values than other species in dietary fiber, while Eryngium cf. campestre detach with superior results in lipids. About the analyzed minerals, the leaves of Eryngium cf. campestre expressed results superior to the other in N, Ca, Mg, S and Cu. The amount of iron highlighted in sheets of E. foetidum, whereas P, K, Mn, Zn and B were most significant on leaves of C. sativum. It was concluded that the levels of total phenolic compounds found in these vegetables, characterize them for its high potential in the antioxidant and inhibition of lipoxygenase and α-amylase enzymes. Their protein and mineral levels classify them as species that can be used as a nutritional source in the preparation of other foods and may their regular consumption bring benefit to human health.
Resumo:
This work was designed to evaluate the effect of storage forms and conditions upon the enzyme activity of phytase and bioavaibility of calcium and phosphorus in broiler diets. The work was accomplished in two steps. The first step, made in the laboratory measured the activity of the phytase enzyme along the storage period. In this step, two experiments were performed: Experiment 1, constituted of 5 treatments (pure phytase stored at 0 °C, 4 °C and environmental temperature and mixed to vitamin and mineral supplement, stored at environmental temperature) in CRD and split plot scheme. The activities were evaluated every 14 days for 112 days of storage, being verified that the phytase storage in the pure form at 0o C was superior to the other treatments. Experiment 2, made up of 4 treatments (phytase mixed to the ration directly, directly and afterwards pelleted, via mineral supplement and via vitamin supplement),all the treatments being stored at environmental temperature, in CRD and split plot scheme. The activities were evaluated every 7 days for 56 days' storage, being verified that the storage of the phytase mixed to the ration via vitamin supplement and directly with the ration pelleted later, provoked a fall in phytase activity when compared with the other treatments. In the second step, the effect of phytase on the bioavaibility of calcium and phytic phosphorus was evaluated, 2 experiments being accomplished (3 and 4); in both experiments were utilized 576 broiler line chicks, housed in an array of heated batteries, receiving practical diets on the basis of corn and soybean meal (basal) for 21days. At the end of 27 days of age,96 birds were slaughtered for evaluation of the mineral contents (Ca and P) in the tíbias and plasma phosphorus. The excretae were collected from 22 to 27 days of age of the birds. Experiment 3: A CRD with the treatments in 2 x 3 x 2 +4 factorial arrangement was utilized, namely, two levels of total phosphorus (0.35 and 0.45% of total phosphorus), three leveis of phytase (500, 750 and 1,000 FTU) and four additional treatments with levels of 0.35 and 0.45 % of available phosphorus for each sex, with three replicates per treatment. There was significant interaction among levels of phosphorus and phytase (P< 0.05) for weight gain, ration consumption and feed conversion. Phytase did not indicate significant differences when the level 0.45% was utilized, nevertheless, at the level 0.35% as phytase was supplemented, weight gain, ration consumption and feed conversion were improved, chiefly with 1,000 FTU/Kg, in both sexes. The males presented greater weight gain. The ration consumption and feed conversion were equal to those of females. The contrast 0.45% did not affect the performance of males and females, the same not occurring with the level 0.35%,at which the available phosphorus was superior in both the sexes. The highest contents of ashes, phosphorus and calcium in the tíbias and plasma phosphorus were obtained with the levels of 750 and 1,000 FTU/Kg of phytase and 0.45% of total phosphorus. The males presented higher contents of ashes in the tibias. The level 0.45% of available phosphorus presented the greatest contents of ashes, calcium and phosphorus in the tibias, and phosphorus in the plasma. The lowest excretions of phosphorus occurred at the levels 0.35% of total phosphorus and 1,000FTU/kg of phytase. The lowest contents of ashes and calcium in the excretae were obtained with 0.35% and 1,000FTU/Kg of phytase. The females excreted smallest amounts of ashes, calcium and phosphorus than the males. Experiment 4: a CRD with the treatments in 3 x 4 x 2 factorial arrangement, namely, three levels of phytase (0, 500 and 1,000 FTU), four levels of calcium (0.7, 0.8, 0.9 and 1.0%) with four replicates per treatment. The performance was not affected by the treatments utilized, the males being superior to the females in weight gain, feed consumption and conversion. The contents of ashes in the tibias were not affected by the levels of phytase but as calcium levels raised, the ash contents increased. The contents of calcium and phosphorus in the tibias increased with the supplementation of 500 and 1,000 FTU/kg of phytase and with calcium levels. The utilization of phytase did not decrease the excretion of ashes, calcium and phosphorus.
Resumo:
Salinity, ever present in agricultural soils, affects plant productivity. However, there are species more tolerant than others, and the study of response mechanisms to salinity is necessary in order to elucidate which responses are correlated with tolerance to salinity. Thus, we aimed at physiologically characterizing two Glycine max L. genotypes concerning saline stress, and identify which variables are more correlated with tolerance to salinity. For this, plants of cultivars AS 3730 and M 8372 were submitted to three saline concentrations (0, 50 and 100 mM), having sampled 0, 8 and 16 days. We conducted analysis for growth, enzymatic and non-enzymatic antioxidant metabolism, photosynthesis beyond the content of chlorophyll a and b, carotenoids, total soluble sugars, reducing sugars, proteins and proline. A results, cultivar M 8372 presented better growth, higher antioxidant enzyme activity and higher content of antioxidants such as ascorbate and carotenoids, when compared to cultivar AS 3730. In addition, cultivar M 8372 also presented lower levels of lipid peroxidation. However, cultivar AS 3730 obtained higher contents of proline, an osmoprotector and lower growth compromise when compared to its control. In conclusion, there is a differential response of the cultivars to salinity.
Resumo:
Despite tobacco being a culture propagated by seeds, there is little information concerning tests that allow the distinction of similar germination lots in different levels of vigor. The diversity of cultivars available in the market, and a few peculiarities of the species, such as uneven maturation of the flowers, fruits and seeds, small size and seed dormancy, are considered obstacles for obtaining lots of tobacco of high physiological potential. Thus, this research was developed with the objective of adapting feasibility and vigor tests for evaluating the physiological potential of tobacco seed lots. We used nine lots of tobacco seeds of cultivar CSC 447 and nine lots of seeds of cultivar BAT 2101, belonging to variety groups Virginia and Burley, respectively. Initially, germination test was conducted to characterize the profile of the lots. For determining the feasibility and vigor of the tobacco seeds, germination tests were conducted in distinct temperatures, controlled emergence conditions, electric conductivity, artificial aging and in tetrazolium. For determining the isoenzymatic marker for seed quality, analyses were conducted with enzymes catalase, esterase, malate dehydrogenase and alcohol dehydrogenase. In conclusion, the emergence tests at 25oC and artificial aging at 41oC for 72 hours, are efficient in discriminating the lots of tobacco seeds in different levels of vigor. The electric conductivity and germination tests in different temperatures have distinct responses in relation to the genotype of the tobacco seeds. The tetrazolium test using the methodology with pre-conditioning in 3.5% sodium hypochlorite solution and subsequent emersion in 1.0% tetrazolium solution for 18 hours is efficient for the quick evaluation of the feasibility of tobacco seeds. The analysis of the profiles of enzymes catalase, esterase, malate dehydrogenase and alcohol dehydrogenase is efficient as markers for tobacco seed quality.