1 resultado para Uniformly
em Repositorio Institucional da UFLA (RIUFLA)
Filtro por publicador
- Aberystwyth University Repository - Reino Unido (4)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (5)
- Aquatic Commons (8)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (7)
- Archive of European Integration (1)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (11)
- Aston University Research Archive (45)
- Biblioteca de Teses e Dissertações da USP (1)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (11)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (20)
- Biblioteca Digital de Teses e Dissertações Eletrônicas da UERJ (5)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (31)
- Boston University Digital Common (5)
- Brock University, Canada (2)
- Bucknell University Digital Commons - Pensilvania - USA (6)
- Bulgarian Digital Mathematics Library at IMI-BAS (18)
- CaltechTHESIS (10)
- Cambridge University Engineering Department Publications Database (22)
- CentAUR: Central Archive University of Reading - UK (45)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (89)
- Cochin University of Science & Technology (CUSAT), India (8)
- Coffee Science - Universidade Federal de Lavras (1)
- Comissão Econômica para a América Latina e o Caribe (CEPAL) (1)
- CORA - Cork Open Research Archive - University College Cork - Ireland (5)
- Digital Commons - Michigan Tech (1)
- Digital Commons - Montana Tech (2)
- Digital Commons at Florida International University (7)
- Digital Peer Publishing (1)
- DigitalCommons - The University of Maine Research (2)
- DigitalCommons@The Texas Medical Center (11)
- DigitalCommons@University of Nebraska - Lincoln (3)
- DRUM (Digital Repository at the University of Maryland) (1)
- Duke University (9)
- eResearch Archive - Queensland Department of Agriculture; Fisheries and Forestry (5)
- Greenwich Academic Literature Archive - UK (2)
- Helda - Digital Repository of University of Helsinki (7)
- Indian Institute of Science - Bangalore - Índia (119)
- Instituto Politécnico do Porto, Portugal (1)
- Massachusetts Institute of Technology (8)
- National Center for Biotechnology Information - NCBI (30)
- Publishing Network for Geoscientific & Environmental Data (28)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (40)
- Queensland University of Technology - ePrints Archive (79)
- Repositório Científico da Universidade de Évora - Portugal (1)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (1)
- Repositório digital da Fundação Getúlio Vargas - FGV (10)
- Repositorio Institucional da UFLA (RIUFLA) (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (93)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (3)
- Universidad de Alicante (1)
- Universidad Politécnica de Madrid (22)
- Universidade Complutense de Madrid (1)
- Universidade Federal do Pará (6)
- Universidade Federal do Rio Grande do Norte (UFRN) (9)
- Universitat de Girona, Spain (4)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (2)
- Université de Lausanne, Switzerland (2)
- Université de Montréal, Canada (9)
- University of Connecticut - USA (2)
- University of Michigan (14)
- University of Queensland eSpace - Australia (25)
- University of Washington (5)
- WestminsterResearch - UK (1)
Resumo:
The James-Stein estimator is a biased shrinkage estimator with uniformly smaller risk than the risk of the sample mean estimator for the mean of multivariate normal distribution, except in the one-dimensional or two-dimensional cases. In this work we have used more heuristic arguments and intensified the geometric treatment of the theory of James-Stein estimator. New type James-Stein shrinking estimators are proposed and the Mahalanobis metric used to address the James-Stein estimator. . To evaluate the performance of the estimator proposed, in relation to the sample mean estimator, we used the computer simulation by the Monte Carlo method by calculating the mean square error. The result indicates that the new estimator has better performance relative to the sample mean estimator.