1 resultado para Simrall, James

em Repositorio Institucional da UFLA (RIUFLA)


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The James-Stein estimator is a biased shrinkage estimator with uniformly smaller risk than the risk of the sample mean estimator for the mean of multivariate normal distribution, except in the one-dimensional or two-dimensional cases. In this work we have used more heuristic arguments and intensified the geometric treatment of the theory of James-Stein estimator. New type James-Stein shrinking estimators are proposed and the Mahalanobis metric used to address the James-Stein estimator. . To evaluate the performance of the estimator proposed, in relation to the sample mean estimator, we used the computer simulation by the Monte Carlo method by calculating the mean square error. The result indicates that the new estimator has better performance relative to the sample mean estimator.