1 resultado para Shrinking
em Repositorio Institucional da UFLA (RIUFLA)
Filtro por publicador
- Aberystwyth University Repository - Reino Unido (3)
- Academic Research Repository at Institute of Developing Economies (1)
- Adam Mickiewicz University Repository (1)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (2)
- Aquatic Commons (1)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (1)
- Archive of European Integration (11)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (4)
- Aston University Research Archive (6)
- Biblioteca de Teses e Dissertações da USP (1)
- Biblioteca Digital | Sistema Integrado de Documentación | UNCuyo - UNCUYO. UNIVERSIDAD NACIONAL DE CUYO. (1)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (2)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (2)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (4)
- Bucknell University Digital Commons - Pensilvania - USA (2)
- Bulgarian Digital Mathematics Library at IMI-BAS (5)
- CaltechTHESIS (2)
- Cambridge University Engineering Department Publications Database (1)
- CentAUR: Central Archive University of Reading - UK (8)
- Center for Jewish History Digital Collections (1)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (23)
- Cochin University of Science & Technology (CUSAT), India (2)
- Comissão Econômica para a América Latina e o Caribe (CEPAL) (4)
- CORA - Cork Open Research Archive - University College Cork - Ireland (4)
- Cornell: DigitalCommons@ILR (1)
- Corvinus Research Archive - The institutional repository for the Corvinus University of Budapest (1)
- Digital Commons - Michigan Tech (1)
- Digital Commons @ DU | University of Denver Research (1)
- Digital Commons @ Winthrop University (1)
- Digital Commons at Florida International University (3)
- DigitalCommons - The University of Maine Research (1)
- Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland (1)
- Duke University (1)
- eResearch Archive - Queensland Department of Agriculture; Fisheries and Forestry (1)
- Helda - Digital Repository of University of Helsinki (2)
- Indian Institute of Science - Bangalore - Índia (8)
- Instituto Politécnico do Porto, Portugal (2)
- Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States (1)
- Massachusetts Institute of Technology (2)
- Memoria Académica - FaHCE, UNLP - Argentina (4)
- National Center for Biotechnology Information - NCBI (3)
- Portal de Revistas Científicas Complutenses - Espanha (1)
- Publishing Network for Geoscientific & Environmental Data (7)
- QSpace: Queen's University - Canada (1)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (15)
- Queensland University of Technology - ePrints Archive (29)
- Repositorio de la Universidad de Cuenca (1)
- Repositorio Institucional da UFLA (RIUFLA) (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (18)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (2)
- Universidad del Rosario, Colombia (3)
- Universidad Politécnica de Madrid (2)
- Universidade Estadual Paulista "Júlio de Mesquita Filho" (UNESP) (1)
- Universidade Federal do Pará (2)
- Universidade Federal do Rio Grande do Norte (UFRN) (2)
- Universidade Técnica de Lisboa (2)
- Universitat de Girona, Spain (1)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (5)
- Université de Lausanne, Switzerland (1)
- Université de Montréal, Canada (4)
- Université Laval Mémoires et thèses électroniques (1)
- University of Queensland eSpace - Australia (1)
- University of Washington (1)
Resumo:
The James-Stein estimator is a biased shrinkage estimator with uniformly smaller risk than the risk of the sample mean estimator for the mean of multivariate normal distribution, except in the one-dimensional or two-dimensional cases. In this work we have used more heuristic arguments and intensified the geometric treatment of the theory of James-Stein estimator. New type James-Stein shrinking estimators are proposed and the Mahalanobis metric used to address the James-Stein estimator. . To evaluate the performance of the estimator proposed, in relation to the sample mean estimator, we used the computer simulation by the Monte Carlo method by calculating the mean square error. The result indicates that the new estimator has better performance relative to the sample mean estimator.