1 resultado para Montgomery, James, 1771-1854.
em Repositorio Institucional da UFLA (RIUFLA)
Filtro por publicador
- Aberystwyth University Repository - Reino Unido (1)
- Adam Mickiewicz University Repository (1)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (1)
- Andina Digital - Repositorio UASB-Digital - Universidade Andina Simón Bolívar (7)
- Applied Math and Science Education Repository - Washington - USA (1)
- Aquatic Commons (5)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (2)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (1)
- Biblioteca Digital | Sistema Integrado de Documentación | UNCuyo - UNCUYO. UNIVERSIDAD NACIONAL DE CUYO. (1)
- Biblioteca Digital da Câmara dos Deputados (2)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (3)
- Biblioteca Digital de Teses e Dissertações Eletrônicas da UERJ (3)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (30)
- Boston University Digital Common (11)
- Brock University, Canada (88)
- Bucknell University Digital Commons - Pensilvania - USA (2)
- Cambridge University Engineering Department Publications Database (4)
- CentAUR: Central Archive University of Reading - UK (29)
- Center for Jewish History Digital Collections (7)
- Chapman University Digital Commons - CA - USA (9)
- Comissão Econômica para a América Latina e o Caribe (CEPAL) (2)
- Dalarna University College Electronic Archive (3)
- Digital Archives@Colby (39)
- Digital Commons @ Winthrop University (2)
- Digital Peer Publishing (1)
- DigitalCommons - The University of Maine Research (1)
- DigitalCommons@The Texas Medical Center (2)
- DigitalCommons@University of Nebraska - Lincoln (2)
- Digitale Sammlungen - Goethe-Universität Frankfurt am Main (81)
- eResearch Archive - Queensland Department of Agriculture; Fisheries and Forestry (3)
- Gallica, Bibliotheque Numerique - Bibliothèque nationale de France (French National Library) (BnF), France (83)
- Harvard University (7)
- Helda - Digital Repository of University of Helsinki (3)
- Indian Institute of Science - Bangalore - Índia (2)
- Memoria Académica - FaHCE, UNLP - Argentina (53)
- Ministerio de Cultura, Spain (7)
- Plymouth Marine Science Electronic Archive (PlyMSEA) (8)
- Publishing Network for Geoscientific & Environmental Data (105)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (100)
- Queensland University of Technology - ePrints Archive (30)
- RDBU - Repositório Digital da Biblioteca da Unisinos (2)
- Repositório digital da Fundação Getúlio Vargas - FGV (3)
- Repositório Digital da UNIVERSIDADE DA MADEIRA - Portugal (1)
- Repositorio Institucional da UFLA (RIUFLA) (1)
- Repositório Institucional da Universidade Estadual de São Paulo - UNESP (2)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (28)
- SAPIENTIA - Universidade do Algarve - Portugal (1)
- School of Medicine, Washington University, United States (15)
- South Carolina State Documents Depository (20)
- Universidad Autónoma de Nuevo León, Mexico (8)
- Universidad del Rosario, Colombia (1)
- Universidade Federal do Pará (3)
- Universidade Federal do Rio Grande do Norte (UFRN) (1)
- Universidade Metodista de São Paulo (1)
- Université de Lausanne, Switzerland (1)
- Université de Montréal, Canada (16)
- University of Michigan (121)
- University of Southampton, United Kingdom (2)
Resumo:
The James-Stein estimator is a biased shrinkage estimator with uniformly smaller risk than the risk of the sample mean estimator for the mean of multivariate normal distribution, except in the one-dimensional or two-dimensional cases. In this work we have used more heuristic arguments and intensified the geometric treatment of the theory of James-Stein estimator. New type James-Stein shrinking estimators are proposed and the Mahalanobis metric used to address the James-Stein estimator. . To evaluate the performance of the estimator proposed, in relation to the sample mean estimator, we used the computer simulation by the Monte Carlo method by calculating the mean square error. The result indicates that the new estimator has better performance relative to the sample mean estimator.