2 resultados para Métodos para a tomada de decisão

em Repositorio Institucional da UFLA (RIUFLA)


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Biplot graphics are widely employed in the study of the genotypeenvironment interactions, but they are only a graphical tool without a statistical hypothesis test. The singular values and scores (singular vectors) used in biplots correspond to specific estimates of its parameters, and the use of uncertainty measures may lead to different conclusions from those provided by a simple visual evaluation. The aim of this work is to estimate the genotype-environment interactions, using AMMI analysis, through Bayesian approach. Therefore the credibility intervals can be used for decision-making in different situations of analyses. It allows to verify the consistency of the selection and recommendation of cultivars. Two analyses were performed. The first analysis looked into 10 regular commercial hybrids and all possible 45 hybrids obtained from them. They were assessed in 15 locations. The second analysis evaluated 28 hybrids in 35 different environments, with imbalance data. The ellipses were grouped according to the standard of interaction in the biplot. The AMMI analysis with a Bayesian approach proved to be a complete analysis of stability and adaptability, which provides important information that may help the breeder in their decisions. The regions of credibility, built in the biplots, allow to perform an accurate selection and a precise genotype recommendation, with a level of credibility. Genotypes and environments can be grouped according to the existing interaction pattern, which makes possible to formulate specific recommendations. Moreover the environments can be evaluated, in order to find out which ones contribute similarly to the interaction and those to be discarted. The method makes possible to deal with imbalanced data in a natural way, showing efficiency for multienvironment trials. The prediction takes into account instability and the interaction standard of the observed data, in order to establish a direct comparison between genotypes of both 1st and 2nd seasons.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The principal component analysis assists the producers in making decision of which evaluated features must be maintained in performance tests indexes, according to the variation present in these animals evaluated. The objective in this study was to evaluate a set of characteristics measured in a performance test in semifeedlot cattle of the Simmental and Angus breeds, by means principal component analysis (PC), aim to identify the features that represent most of the phenotypic variation for preparation of indexes. It was used data from 39 Angus and 38 Simmental bulls from the Santa Éster farm, located in Silvianópolis - MG. The performance test period was from october 2014 to february 2015. The features evaluated in the test were: final weight (FW), average daily gain weight (GW), respiratory rate (RR), haircoat temperature (HT) and rectal (RT), hair number (HN), hair length (HL), hair thickness (HT), muscularity (MUSC), racial characteristics, angulation, reproductive and balance (BAL), height of the front and back, width and length of croup, body length, depth and heart girth, subcutaneous fat thickness and rump (FTR), loin eye area and marbling (MAR). It was used PRINCOMP from SAS program for procedure the PC analysis. It was found that of the 27 features evaluated, the first four PC for Simmental breed explained 74% total variation data. The four PC selected with the corresponding weighting coefficients formed the following index: (0.27 * FW) + (0.47 * MUSC) + (0.50 * HL) + (0.39 * HT). Since the characteristics related to the adaptability of great importance for the studied breed, it was decided to keep the index of evidence for the Angus breed, the feature hair number, because there is a feature that presented a great variability and occupied one of the first principal component. Thus, the Angus index was composed by five features, with 79% total variation data, resulting in the following formula: (0.26 * FW) + (0.33 * BAL) + (0.58 * MAR) - (0.43 * FTR) – (0.38 * HN). By the principal component analysis it was possible to minimize the features number to be evaluated on performance tests from that farm, making the animal selection rapidly and accurate.