6 resultados para Óxido de magnésio
em Repositorio Institucional da UFLA (RIUFLA)
Resumo:
Phosphate fertilizers are critical for crop production in tropical soils, which are known for having high phosphate-fixing capacity and aluminium saturation, as well as low pH and calcium contents. Fluorine is a component of many phosphate rocks used to make phosphate fertilizers, via a process that generates hexafluorosilicic acid (H2SiF6). While many treatment technologies have been proposed for removal of fluorine in industrial facilities, little attention has been given to a process of neutralizing H2SiF6 with calcium oxide aiming to find out an alternative and sustainable use of a by-product with a great potential for beneficial use in tropical agriculture. This study evaluated the effect of a by-product of phosphoric acid production (fluorite with silicon oxide, hereafter called AgroSiCa) in levels of phosphorus (P), calcium (Ca), silicon (Si), aluminum (Al) and fluorine (F) and some others parameters in soils as on growth of soybean and corn. Experiments were conducted in a greenhouse condition at the Federal University of Lavras (UFLA), Lavras, Minas Gerais, using different types of soils in tropical regions and different doses of AgroSiCa. The application of AgroSiCa resulted in a slight increase in soil pH and significant increases in calcium, phosphorus and silicon in the soil solution and the shoots of corn and soybeans. We also found very low levels of fluoride in all soil leachates. A significant reduction of labile aluminum levels found in all soils after the cultivation of corn and soybeans. In sum, AgroSiCa improved soil properties and contributed to better growth of both cultures. In sum, AgroSiCa improved soil properties and contributed to a better growth of both crops. Our results show that reacting H2SiF6 derived from the wet-process phosphoric acid production with calcium oxide leads to a by-product with potential for agricultural use, especially when applied in highly-weathered soils. Besides providing calcium and silicon to plants, the use of such by-product in soils with high phosphate-fixing capacity and high aluminium saturation delivers additional benefits, since fluoride and silicon can play an important role in improving soil conditions due to the formation of less plant-toxic forms of aluminium, as well as upon decreasing phosphate fixation, thus improving root development and making fertilizer-derived phosphate more available for plant growth.
Resumo:
This work presents a study on the production of biodiesel by esterification reaction of oleic acid with methanol using batch reactor and different catalysts based on CeO2 and WO3 and HZSM-5. Acid treatment was performed in order to increase the catalytic activity. Different characterization techniques were performed, among them X-ray diffraction (XRD), Thermogravimetric analysis TGA/DTA, Spectroscopy in the Region in Fourier Transform Infrared (FTIR) and X-ray fluorescence (XRF). The effects of independent variables: temperature, molar ratio of oil: alcohol and the amount of catalyst and their interactions on the dependent variable (conversion of oleic acid to the corresponding ester). Overall, through the results obtained in the characterization was observed that the applied treatments were efficient, however the XRF technique, indicated that tungsten oxide leaching could occur during the preparation of the materials. The treatments performed on HZSM-5 caused no significant changes in the structure indicating that the zeolite was quite resistant to the treatments used. It was evaluated using complete 23 factorial design. For the catalysts investigated, the best reaction conditions were obtained when using higher levels of the independent variables temperature and amount of catalyst. However, for the variable molar ratio the lowest level showed significant yields for most of the synthesized catalyst, obtaining maximum conversion to the OC (67.97%), OW (74.37%), HZSM-5 (61.16%) OC-OW 1 (75.93%), OC-OW 2 (82.57%), OC-OW 3 (79.15%), S/OC-OW 1 (86.90%), S/OC-OW 2 (91.04%), S/OC-OW 3 (88.60%), S/OC-OW/H 1 (92.34%), S/OC-OW/H 2 (100%) and S/OC-OW/H 3 (98.16%). According to the experimental design, the temperature has the biggest influence on the reaction variable for all the synthesized catalysts. Among the catalysts investigated S/OC-OW/H 2 e S/OC-OW/H 3 were more effective. Reuse tests showed that the catalyst activity decreased after each cycle, indicating that the regeneration process was effective. The leaching test indicated that the catalysts are heterogeneous in the evaluated operating range. The catalysts investigated showed themselves promising for the production of biodiesel.
Resumo:
Demand for potassium in Brazil is large and is constantly increasing, but only about 5% of all consumed potassium is produced in the country. This low domestic production implies high rate of potassium imports, leaving the country vulnerable in the event of any difficulty to import this product and currency fluctuations. The modified glauconite is a rock that has a high potential for potassium exploration, found in Minas Gerais state, its extraction is relatively cheap and the prospected rock volume is high. The difficulty for its use as a direct source of potassium is in its low solubility. Thus, the objective of this study was to perform a chemical and mineralogical characterization of the modified glauconite and evaluate the effectiveness of techniques and treatments in the potassium solubilization contained in the rock. For this study, it was used characterization techniques such as X-ray diffraction, scanning electron microscopy, diffraction by Synchrotron Light and chemical analysis of high and low power of potassium extraction. Also granulometric testing and thermal treatments with different forms of calcination were carried out. Overall, it was found that the modified glauconite is a compound of minerals, of the mica groups K-feldspar and quartz and calcination substantially alter the crystal structure of these minerals, increasing the potassium availability. While the natural solubility of glauconite modified be very low, rock calcination added with high fluxes of calcium and low magnesium content at 1200 °C led to potassium solubility increase in order of 100 times compared to that observed in the glauconite natural modified.
Resumo:
The need for renewal and a more efficient use of energy resources has provided an increased interest in studies of methane activation processes in the gas phase by transition metal oxides. In this respect, the present work is an effort to assess , by means of a computational standpoint, the reactivity of NbOm n+ and FeOm n+ (m = 1, 2, n = 0, 1, 2) oxides in the activation process of the methane C-H bond, which corresponds to the first rate limiting step in the process of converting methane to methanol. These oxides are chosen, primarily, because the iron oxides are the most experimentally studied, and iron ions are more abundant in biological mediums. The main motive for choosing niobium oxides is the abundance of natural reserves of this mineral in Brazil (98%), especially in Minas Gerais. Initially, a thorough investigation was conducted, using different theoretical methods, to analyze the structural and electronic properties of the investigated oxides. Based on these results, the most reliable methodology was selected to investigate the activation process of the methane C-H bond by the series of iron and niobium oxides, considering all possible reaction mechanisms known to activate the C-H bond of alkanes. It is worth noting that, up to this moment and to our knowledge, there are no papers, in literature , investigating and comparing all the mechanisms considered in this work. I n general, the main results obtained show different catalytic tendencies and behaviors throughout the series of monoxides and dioxides of iron and niobium. An important and common result found in the two studies is that the increase in the load on the metal center and the addition of oxygen atoms to the metal, clearly favor the initial thermodynamics of the reaction, i.e., favor the approach of the metal center to methane, distorting its electron cloud and, thereby, decreasing its inertia. Comparing the two sets of oxides, we conclude that the iron oxides are the most efficient in activating the methane C-H bond. Among the iron oxides investigated, FeO + showed better kinetic and thermodynamic performance in the reaction with methane, while from the niobium oxides and ions NbO 2+ and NbO2 2+, showed better catalytic efficiency in the activation of the methane C-H bond.
Resumo:
With the emergence of new genetic lines due to intense breeding improvement on swine production in recent years, there is the need to adapt more accurately diets for the current sows, which have higher nutritional demands. The use of functional amino acids aimsto optimize the sows production and among these amino acids arginine has excelled. Arginine is involved in several important metabolic pathways, for example, it serves as a substrate forsynthesis of protein, creatine, nitric oxide, polyamines, citrulline, agmatine, ornithine, proline, and glutamate. It also helps to stimulate the secretion of some hormones such as insulin, prolactin, and growth hormone.As arginine plays such important roles, its supplementation has been suggested in lactation feed once it may enhance the development of the mammary gland and milk nutritional profile, thus, providing a better piglet development.Thus, the objective was to evaluate the effect of lactation feed supplementation with L-Arginine on the productive performance of primiparoussows and their respective litter.One hundred forty sows from the same genetic lineage on a commercial farm, located in the city of Oliveira, MG were used in this study, in a completely randomized design with five treatments: control diet without amino acid supplementation and four diets with increasing levels of L-Arginine supplementation (containing 98.5% purity) - 0.5, 1.0, 1.5, and 2.0%. Each treatment hadtwenty-eight swine sows, and the experimental unit was the sowand its litter.It was used ‘on top’ amino acid supplementation.All data was submitted to variance analysis using the SAEG Software: version 9.1 (SAEG, 2005).The data relating to days of lactation were compared by Tukey test (5%). L-Arginine supplementation levels in lactation feed did not influence (P>0.05) average daily feed intake, body condition variables, and blood parameters of the sows (urea, creatinine, and non-esterified fatty acids) as well as it did not affect the dry matter, crude protein, and amino acid profile of milk and the litter performance. There was effect (P<0.05) of days of lactation on the percentage of crude protein and amino acids in milk, which reduced througout the days of lactation. The L-Arginine supplementation on the lactation diet at levels of 0.5, 1.0, 1.5, and 2.0% did not influence the sow and its respective litter performance.
Resumo:
Forestry has grown in a continuous and accelerated manner in Brazil, constituting a strategic activity for the generation of employment, income and tributes, favoring social and economic development of Brazilian agribusiness. The objectives of this study were: (1) evaluate the contents of K, Ca and Mg in the reserve compartments, non-interchangeable, interchangeable, available and the speed of its release, its correlations and its effects over productivity (annual average increment – AAI) of eucalyptus plantations, in forest sites cultivated in soils of the state of Rio Grande do Sul; (2) evaluate the initial growth, nutrition and physiological aspects of eucalyptus plants, cultivated with and without the addition of mineral sources of potassium (K), calcium (Ca) and magnesium (MG), in soils obtained from forest sites in the state of Rio Grande do Sul. In the first study, contents of K, Ca and Mg were evaluated in sulfuric digestion extract, boiling nitric acid, ammonium chloride, Mehlich-1 (only K), potassium chloride (Ca and Mg), as well as the release speed of these nutrients in the soil. In the second study, growth variables, nutritional aspects, photosynthetic rate (A) and transpiration rate of the plants (E) grown in distinct soils were evaluated under controlled conditions. The contents of K, Ca and Mg varied between compartments and depths in the studied soil classes, with the highest proportions found in the reserve compartment, indicating the importance of this compartment for the supplement of these nutrients at average and long terms. The great majority of K, Ca and Mg compartments presented significant correlations between each other, showing the dependence between them and the importance of evaluating the contents of these nutrients in the different compartments to adapt the nutritional management of the plants to each soil class, and to obtain continuous productions, minimizing the negative effects to the environment. Plants cultivated in soils that present larger reserves, availability and K, Ca and Mg release kinetics, presented similar height (H), stem diameter (SD) and shoot dry mass (SDM), with or without fertilization with K, Ca and Mg. The plants presented higher leaf content and accumulation of K in all soils fertilized with K, Ca and Mg.