9 resultados para wind and floating motion
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
Vortex-induced motions (VIM) of floating structures are very relevant for the design of mooring and riser systems. In the design phase, spar and monocolumn VIM behavior, as well as semisubmersible and tension leg platform flow-induced motions, is studied and evaluated. This paper provides a checklist of topics and evidence from a number of sources to justify the selection that should be considered when designing spars or monocolumn platforms regarding the VIM phenomenon. An overview of the influential aspects of the VIM is presented such as heading, external appendages of the hull, concomitant presence of waves and currents, motion suppressor, draft condition (immersed portion of the hull), and external damping due to the presence of risers. Previous works concerning the VIM studies on spar and monocolumn platforms are also addressed. Whenever possible, the results of experiments from diverse authors on this matter are presented and compared. [DOI: 10.1115/1.4003698]
Resumo:
The Rio de la Plata waters form a low salinity tongue that affects the circulation, stratification and the distributions of nutrients and biological species over a wide extent of the adjacent continental shelf. The plume of coastal waters presents a seasonal meridional displacement reaching lower latitudes (28,S) during austral winter and 32 degrees S during summer. Historical data suggests that the wind causes the alongshore shift, with southwesterly (SW) winds forcing the plume to lower latitudes in winter while summer dominant northeasterly (NE) winds force its southward retreat. To establish the connection between wind and outflow variations on the distribution of the coastal waters, we conducted two quasi-synoptic surveys in the region of Plata influence on the continental shelf and slope of southeastern South America, between Mar del Plata, Argentina and the northern coast of Santa Catarina, Brazil. We observed that: (A) SW winds dominating in winter force the northward spreading of the plume to low latitudes even during low river discharge periods; (B) NE winds displace the plume southward and spread the low salinity waters offshore over the entire width of the continental shelf east of the Plata estuary. The southward retreat of the plume in summer leads to a volume decrease of low salinity waters over the shelf. This volume is compensated by an increase of Tropical waters, which dominate the northern shelf. The subsurface transition between Subantarctic and Subtropical Shelf Waters, the Subtropical Shelf Front, and the subsurface water mass distribution, however, present minor seasonal variations. Along shore winds also influence the dynamics and water mass variations along the continental shelf area. In areas under the influence of river discharge, Subtropical Shelf Waters are kept away from the coastal region. When low salinity waters retreat southward, NE winds induce a coastal upwelling system near Santa Marta Cape. In summer, solar radiation promotes the establishment of a strong thermocline that increases buoyancy and further enhances the offshore displacement of low salinity waters under the action of NE winds. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
With fast growth rates and clonal reproduction, bamboos can rapidly invade forest areas, drastically changing their original structure. In the Brazilian Atlantic Forest, where recent mapping efforts have shown that woody bamboos dominate large areas, the present study assessed the differences in soil and vegetation between plots dominated (>90% of bamboo coverage) and not dominated (<10% of coverage) by the native Guadua tagoara. Surface soil was physically and chemically analyzed, and trees at three size classes (seedling, sapling, and adult) were counted, identified and measured. New inventories were conducted to assess recruitment, mortality, and damage rates. Bamboo plots had more fertile soils (higher bases saturation and lower potential acidity) due to the preferential occurrence of G. tagoara on more clayey soils. Bamboo-dominated plots had lower density of adult trees (diameter >5 cm) and lower species density. In addition, overall tree diameter distribution was very different between environments, with bamboo plots having greater concentration of small-sized trees. Such differences are probably related to the general tendency of higher mortality, recruitment, and damage rates in bamboo plots. Greater physical (wind and bamboo-induced damages) and physiological stress (heat and light) in bamboo plots are probable causes of bamboo-dominated plots being more dynamic. Finally, we discuss the differences between Atlantic and Amazonian Guadua-dominated forests, causes, and possible consequences of bamboo overabundance to the Atlantic Forest conservation. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
NAKAGAWA, T. H., E. T. U. MORIYA, C. D. MACIEL, and F. V. SERRAO. Frontal Plane Biomechanics in Males and Females with and without Patellofemoral Pain. Med. Sci. Sports &ere., Vol. 44, No. 9, pp. 1747-1755, 2012. Purpose: The study's purpose was to compare trunk, pelvis, hip, and knee frontal plane biomechanics in males and females with and without patellofemoral pain syndrome (PFPS) during stepping. Methods: Eighty recreational athletes were equally divided into four groups: female PFPS, female controls, male PFPS, and male controls. Trunk, pelvis, hip, and knee frontal plane kinematics and activation of the gluteus medius were evaluated at 15 degrees, 30 degrees, 45 degrees, and 60 degrees of knee flexion during the downward and upward phases of the stepping task. Isometric hip abductor torque was also evaluated. Results: Females showed increased hip adduction and knee abduction at all knee flexion angles, greater ipsilateral trunk lean and contralateral pelvic drop from 60 degrees of knee flexion till the end of the stepping task (P = 0.027-0.001), diminished hip abductor torque (P < 0.001), and increased gluteus medius activation than males (P = 0.008-0.001). PFPS subjects presented increased knee abduction at all the angles evaluated; greater trunk, pelvis, and hip motion from 45 of knee flexion of the downward phase till the end of the maneuver; and diminished gluteus medius activation at 60 degrees of knee flexion, compared with controls (P = 0.034-0.001). Females with PFPS showed lower hip abductor torque compared with the other groups. Conclusions: Females presented with altered frontal plane biomechanics that may predispose them to knee injury. PFPS subjects showed frontal plane biomechanics that could increase the lateral patellofemoral joint stress at all the angles evaluated and could increase even more from 45 degrees of knee flexion in the downward phase untill the end of the maneuver. Hip abductor strengthening and motor control training should be considered when treating females with PFPS.
Resumo:
The periodic spectroscopic events in eta Carinae are now well established and occur near the periastron passage of two massive stars in a very eccentric orbit. Several mechanisms have been proposed to explain the variations of different spectral features, such as an eclipse by the wind-wind collision (WWC) boundary, a shell ejection from the primary star or accretion of its wind onto the secondary. All of them have problems explaining all the observed phenomena. To better understand the nature of the cyclic events, we performed a dense monitoring of eta Carinae with five Southern telescopes during the 2009 low-excitation event, resulting in a set of data of unprecedented quality and sampling. The intrinsic luminosity of the He II lambda 4686 emission line (L similar to 310 L-circle dot) just before periastron reveals the presence of a very luminous transient source of extreme UV radiation emitted in the WWC region. Clumps in the primary's wind probably explain the flare-like behavior of both the X-ray and He II lambda 4686 light curves. After a short-lived minimum, He II lambda 4686 emission rises again to a new maximum, when X-rays are still absent or very weak. We interpret this as a collapse of the WWC onto the "surface" of the secondary star, switching off the hard X-ray source and diminishing the WWC shock cone. The recovery from this state is controlled by the momentum balance between the secondary's wind and the clumps in the primary's wind.
Resumo:
Introduction: The aim of the present work was to evaluate the resistance to flexural fatigue of Reciproc R25 nickel-titanium files, 25 mm, used in continuous rotation motion or reciprocation motion, in dynamic assays device. Methods: Thirty-six Reciproc R25 files were divided into 2 groups (n = 18) according to kinematics applied, continuous rotary (group CR) and reciprocation motion (group RM). The files were submitted to dynamic assays device moved by an electric engine with 300 rpm of speed that permitted the reproduction of pecking motion. The files run on a ring's groove of temperate steel, simulating instrumentation of a curved root canal with 400 and 5 mm of curvature radius. The fracture of file was detected by sensor of device, and the time was marked. The data were analyzed statistically by Student's t test, with level of significance of 95%. Results: The instruments moved by reciprocating movement reached significantly higher numbers of cycles before fracture (mean, 1787.78 cycles) when compared with instruments moved by continuous rotary (mean, 816.39 cycles). Conclusions: The results showed that the reciprocation motion improves flexural fatigue resistance in nickel-titanium instrument Reciproc R25 when compared with continuous rotation movement. (J Endod 2012;38:684-687)
Resumo:
The regional ocean off southeast Brazil (20 degrees S-28 degrees S) is known as a current-eddy-upwelling region. The proximity of the Brazil Current to the coast in the Cape Sao Tome vicinities, as well as of its quasi-stationary unstable meanders, suggests the possibility of background eddy-induced upwelling. Such phenomenon can intensify the prevalent coastal upwelling due to wind and topographic effects. In this paper, with the help of a numerical simulation, we provide evidence that eddy-induced upwelling in the absence of wind is possible in this region. The simulation was conducted with a regional configuration of the 3-D Princeton Ocean Model initialized by a feature-based implementation of the Brazil Current and Cape Frio eddy, blended with climatology. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
A high-resolution, multi-proxy record has been used to determine the environmental changes during the Holocene on the southern Brazilian shelf Present oceanographic conditions reveal wind and freshwater input as the determinants of short-term productivity changes in the study area. Magnetic susceptibility and grain-size variations, together with proxies of productivity (organic carbon, carbon accumulation rate, Ba, Sr, and Ca content, Ba/Al, Ba/Ti, and Al/Ti ratios) were analyzed and compared with proxies of redox condition (V/Ti ratio), terrigenous input (Fe/Ca and Ti/Ca ratios), as well as other Element/Ti ratios, to evaluate the paleoceanographic and paleoclimatic changes over the period. The core covers a time interval of about 7650 years, with sedimentation rates varying from 0.025 to 0.250 cm a(-1), which represent time intervals of between 8 and 80 a per sample. There is a clear change in the sedimentation rate at about 2800 B.P. All grain-size and elemental results indicate the occurrence of conspicuous changes between 5200 and 5000 cal. B.P., as well as between 3000 and 2800 cal. B.P. A comparison of the results with the palynological information available from the adjacent continental areas suggests that the sedimentary changes in this last interval may be correlated with the onset of modern climatic conditions in South America, and especially, with the onset of the Plata Plume Water, a water mass that carries cold, less saline waters towards the north. However, minor changes are observed at ca. 1500 B.P. and are correlated with an increase in the atmospheric humidity. Furthermore, a time-series analysis undertaken using several proxies indicated the occurrence of Sub-Milankovitch cycles, which may be compared with those reported worldwide. (C) 2008 Elsevier Ltd and INQUA. All rights reserved.
Resumo:
The impacts of change in the Grell convective scheme and biosphere-atmosphere transfer scheme (BATS) in RegCM3 are described. Three numerical experiments (RegZhang, RegClaris and RegArain) are conducted to reduce the RegCM3-Grell rainfall underestimation over tropical South America. The simulation referred to as RegZhang follows modifications made by Zhang et al. (2008) in the BATS. The RegClaris combines the RegZhang BATS parameters with a reduction of water drainage at the bottom of the subsoil layer in the regions covered by the tropical rain forest and a shorter convective time period for the Grell scheme. The RegArain considers this same modification in the Grell scheme, but uses a deeper total soil column and a deeper root system in the BATS. After the first year of simulation, the soil water content in RegZhang is progressively drained out of the soil column resulting in a deficit of rainfall in the Amazon. The RegClaris and RegArain, on the other hand, simulate a similar rainfall annual cycle in the Amazon, showing substantial improvement not only in phase but also in intensity. This improvement is partially related to an increase in evapotranspiration due to a larger availability of water in the soil column. A remote effect is also noted over the La Plata Basin region, where the larger summer rainfall rate may be related to the increase in moisture transport from the Amazon. Wind- and rainfall-based indices are applied to identify South American monsoon (SAM) timing. The RegClaris rainfall rates are adequate to identify the onset and the demise of SAM according to the observed data, whereas the rainfall deficit in RegZhang is associated with a delay in the onset and an early demise of the SAM.