17 resultados para weyl tensor
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
The numerical simulation of flows of highly elastic fluids has been the subject of intense research over the past decades with important industrial applications. Therefore, many efforts have been made to improve the convergence capabilities of the numerical methods employed to simulate viscoelastic fluid flows. An important contribution for the solution of the High-Weissenberg Number Problem has been presented by Fattal and Kupferman [J. Non-Newton. Fluid. Mech. 123 (2004) 281-285] who developed the matrix-logarithm of the conformation tensor technique, henceforth called log-conformation tensor. Its advantage is a better approximation of the large growth of the stress tensor that occur in some regions of the flow and it is doubly beneficial in that it ensures physically correct stress fields, allowing converged computations at high Weissenberg number flows. In this work we investigate the application of the log-conformation tensor to three-dimensional unsteady free surface flows. The log-conformation tensor formulation was applied to solve the Upper-Convected Maxwell (UCM) constitutive equation while the momentum equation was solved using a finite difference Marker-and-Cell type method. The resulting developed code is validated by comparing the log-conformation results with the analytic solution for fully developed pipe flows. To illustrate the stability of the log-conformation tensor approach in solving three-dimensional free surface flows, results from the simulation of the extrudate swell and jet buckling phenomena of UCM fluids at high Weissenberg numbers are presented. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
A twisted generalized Weyl algebra A of degree n depends on a. base algebra R, n commuting automorphisms sigma(i) of R, n central elements t(i) of R and on some additional scalar parameters. In a paper by Mazorchuk and Turowska, it is claimed that certain consistency conditions for sigma(i) and t(i) are sufficient for the algebra to be nontrivial. However, in this paper we give all example which shows that this is false. We also correct the statement by finding a new set of consistency conditions and prove that the old and new conditions together are necessary and sufficient for the base algebra R to map injectively into A. In particular they are sufficient for the algebra A to be nontrivial. We speculate that these consistency relations may play a role in other areas of mathematics, analogous to the role played by the Yang-Baxter equation in the theory of integrable systems.
Resumo:
We construct a consistent theory of a quantum massive Weyl field. We start with the formulation of the classical field theory approach for the description of massive Weyl fields. It is demonstrated that the standard Lagrange formalism cannot be applied for the studies of massive first-quantized Weyl spinors. Nevertheless we show that the classical field theory description of massive Weyl fields can be implemented in frames of the Hamilton formalism or using the extended Lagrange formalism. Then we carry out a canonical quantization of the system. The independent ways for the quantization of a massive Weyl field are discussed. We also compare our results with the previous approaches for the treatment of massive Weyl spinors. Finally the new interpretation of the Majorana condition is proposed.
Resumo:
We introduce a new family of twisted generalized Weyl algebras, called multiparameter twisted Weyl algebras, for which we parametrize all simple quotients of a certain kind. Both Jordan's simple localization of the multiparameter quantized Weyl algebra and Hayashi's q-analog of the Weyl algebra are special cases of this construction. We classify all simple weight modules over any multiparameter twisted Weyl algebra. Extending results by Benkart and Ondrus, we also describe all Whittaker pairs up to isomorphism over a class of twisted generalized Weyl algebras which includes the multiparameter twisted Weyl algebras. (C) 2011 Elsevier Inc. All rights reserved.
Resumo:
We deal with homogeneous isotropic turbulence and use the two-point velocity correlation tensor field (parametrized by the time variable t) of the velocity fluctuations to equip an affine space K3 of the correlation vectors by a family of metrics. It was shown in Grebenev and Oberlack (J Nonlinear Math Phys 18:109–120, 2011) that a special form of this tensor field generates the so-called semi-reducible pseudo-Riemannian metrics ds2(t) in K3. This construction presents the template for embedding the couple (K3, ds2(t)) into the Euclidean space R3 with the standard metric. This allows to introduce into the consideration the function of length between the fluid particles, and the accompanying important problem to address is to find out which transformations leave the statistic of length to be invariant that presents a basic interest of the paper. Also we classify the geometry of the particles configuration at least locally for a positive Gaussian curvature of this configuration and comment the case of a negative Gaussian curvature.
Resumo:
We propose a new CPT-even and Lorentz-violating nonminimal coupling between fermions and Abelian gauge fields involving the CPT-even tensor (K-F)(mu nu alpha beta) of the standard model extension. We thus investigate its effects on the cross section of the electron-positron scattering by analyzing the process e(+) + e(-) -> mu(+) + mu(-). Such a study was performed for the parity-odd and parity-even nonbirefringent components of the Lorentz-violating (K-F)(mu nu alpha beta) tensor. Finally, by using experimental data available in the literature, we have imposed upper bounds as tight as 10(-12) (eV)(-1) on the magnitude of the CPT-even and Lorentz-violating parameters while nonminimally coupled. DOI: 10.1103/PhysRevD.86.125033
Resumo:
We find the first nonlinear correction to the field produced by a static charge at rest in a background constant magnetic field. It is quadratic in the charge and purely magnetic. The third-rank polarization tensor-the nonlinear response function-is written within the local approximation of the effective action in an otherwise model-and approximation-independent way within any P-invariant nonlinear electrodynamics, QED included. DOI: 10.1103/PhysRevD.86.125028
Resumo:
The occurrence of white matter (WM) abnormalities in psychotic disorders has been suggested by several studies investigating brain pathology and diffusion tensor measures, but evidence assessing regional WM morphometry is still scarce and conflicting. In the present study, 122 individuals with first-episode psychosis (FEP) (62 fulfilling criteria for schizophrenia/schizophreniform disorder, 26 psychotic bipolar I disorder, and 20 psychotic major depressive disorder) underwent magnetic resonance imaging, as well as 94 epidemiologically recruited controls. Images were processed with the Statistical Parametric Mapping (SPM2) package, and voxel-based morphometry was used to compare groups (t-test) and subgroups (ANOVA). Initially, no regional WM abnormalities were observed when both groups (overall FEP group versus controls) and subgroups (i.e., schizophrenia/schizophreniform, psychotic bipolar I disorder, psychotic depression, and controls) were compared. However, when the voxelwise analyses were repeated excluding subjects with comorbid substance abuse or dependence, the resulting statistical maps revealed a focal volumetric reduction in right frontal WM, corresponding to the right middle frontal gyral WM/third subcomponent of the superior longitudinal fasciculus, in subjects with schizophrenia/schizophreniform disorder (n = 40) relative to controls (n = 89). Our results suggest that schizophrenia/schizophreniform disorder is associated with right frontal WM volume decrease at an early course of the illness. (c) 2012 Elsevier Ireland Ltd. All rights reserved.
Resumo:
We have shown the possibility of operation by the piezooptical response of PbO-GeO2 glasses doped with rare earth ions and silver nanoparticles by illumination of double frequency CO2 nanosecond laser. Substantial influence of thermoannealing on the output photoinduced elastooptical susceptibilities was established. The effect is very sensitive to temperature and to the corresponding tensor components. The effect of thermoannealing leads to enhanced long-range ordering with the occurrence of corresponding trapping levels within the forbidden gaps. The discovered effects may be used for creation of low-temperature IR laser triggers.
Resumo:
Our previous results on the nonperturbative calculations of the mean current and of the energy-momentum tensor in QED with the T-constant electric field are generalized to arbitrary dimensions. The renormalized mean values are found, and the vacuum polarization contributions and particle creation contributions to these mean values are isolated in the large T limit; we also relate the vacuum polarization contributions to the one-loop effective Euler-Heisenberg Lagrangian. Peculiarities in odd dimensions are considered in detail. We adapt general results obtained in 2 + 1 dimensions to the conditions which are realized in the Dirac model for graphene. We study the quantum electronic and energy transport in the graphene at low carrier density and low temperatures when quantum interference effects are important. Our description of the quantum transport in the graphene is based on the so-called generalized Furry picture in QED where the strong external field is taken into account nonperturbatively; this approach is not restricted to a semiclassical approximation for carriers and does not use any statistical assumptions inherent in the Boltzmann transport theory. In addition, we consider the evolution of the mean electromagnetic field in the graphene, taking into account the backreaction of the matter field to the applied external field. We find solutions of the corresponding Dirac-Maxwell set of equations and with their help we calculate the effective mean electromagnetic field and effective mean values of the current and the energy-momentum tensor. The nonlinear and linear I-V characteristics experimentally observed in both low-and high-mobility graphene samples are quite well explained in the framework of the proposed approach, their peculiarities being essentially due to the carrier creation from the vacuum by the applied electric field. DOI: 10.1103/PhysRevD.86.125022
Resumo:
By combining first-principles electronic structure calculations and existing time-differential gamma-gamma perturbed-angular-correlation experiments we studied the site localization, the local environment, and the electronic structure of Cd impurities in sapphire (alpha-Al2O3) single crystals in different charged states. The ab initio calculations were performed with the full-potential augmented plane wave plus local orbitals method and the projector augmented wave method. Comparing the calculated electric-field-gradient tensor at the Cd nuclei in the alpha-Al2O3 host lattice and the corresponding available experimental values, we have seen that it is equally possible for Cd to replace an Al atom (in a negative charge state) or to be placed in an interstitial site (in a neutral charge state). To finally address the issue of the Cd impurity localization, we performed formation energy calculations. These results have shown that Cd placed in the substitutional Al site, in the negatively charged state, is the most probable configuration.
Resumo:
We present a family of networks whose local interconnection topologies are generated by the root vectors of a semi-simple complex Lie algebra. Cartan classification theorem of those algebras ensures those families of interconnection topologies to be exhaustive. The global arrangement of the network is defined in terms of integer or half-integer weight lattices. The mesh or torus topologies that network millions of processing cores, such as those in the IBM BlueGene series, are the simplest member of that category. The symmetries of the root systems of an algebra, manifested by their Weyl group, lends great convenience for the design and analysis of hardware architecture, algorithms and programs.
Resumo:
Herein, we report results of calculations based on density functional theory (BP86/TZVP) of a set of isatin-Schiff base copper(II) and related complexes, 1-12, that have shown significant pro-apoptotic activity toward diverse tumor cells. The interaction of the copper(II) cation with different ligands has been investigated at the same level of theory. The strength and character of the Cu(II)-L bonding was characterized by metal-ligand bond lengths, vibrational frequencies, binding energies, ligand deformation energies, and natural population analysis. The metal-ligand bonding situation was also characterized by using two complementary topological approaches, the quantum theory of atoms-in-molecules (QTAIM) and the electron localization function (ELF). The calculated electronic g-tensor and hyperfine coupling constants present significant agreement with the EPR experimental data. The calculated parameters pointed to complex 10 as the most stable among the isatin-Schiff base copper(II) species, in good agreement with experimental data that indicate this complex as the most reactive in the series. (C) 2011 Wiley Periodicals, Inc. Int J Quantum Chem, 2012
Resumo:
We describe the system of massive Weyl fields propagating in a background matter and interacting with an external electromagnetic field. The interaction with an electromagnetic field is due to the presence of anomalous magnetic moments. To canonically quantize this system first we develop the classical field theory treatment of Weyl spinors in frames of the Hamilton formalism which accounts for the external fields. Then, on the basis of the exact solution of the wave equation for a massive Weyl field in a background matter we obtain the effective Hamiltonian for the description of spin-flavor oscillations of Majorana neutrinos in matter and a magnetic field. Finally, we incorporate in our analysis the neutrino self-interaction which is essential when the neutrino density is sufficiently high. We also discuss the applicability of our results for the studies of collective effects in spin-flavor oscillations of supernova neutrinos in a dense matter and a strong magnetic field. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
In protein databases there is a substantial number of proteins structurally determined but without function annotation. Understanding the relationship between function and structure can be useful to predict function on a large scale. We have analyzed the similarities in global physicochemical parameters for a set of enzymes which were classified according to the four Enzyme Commission (EC) hierarchical levels. Using relevance theory we introduced a distance between proteins in the space of physicochemical characteristics. This was done by minimizing a cost function of the metric tensor built to reflect the EC classification system. Using an unsupervised clustering method on a set of 1025 enzymes, we obtained no relevant clustering formation compatible with EC classification. The distance distributions between enzymes from the same EC group and from different EC groups were compared by histograms. Such analysis was also performed using sequence alignment similarity as a distance. Our results suggest that global structure parameters are not sufficient to segregate enzymes according to EC hierarchy. This indicates that features essential for function are rather local than global. Consequently, methods for predicting function based on global attributes should not obtain high accuracy in main EC classes prediction without relying on similarities between enzymes from training and validation datasets. Furthermore, these results are consistent with a substantial number of studies suggesting that function evolves fundamentally by recruitment, i.e., a same protein motif or fold can be used to perform different enzymatic functions and a few specific amino acids (AAs) are actually responsible for enzyme activity. These essential amino acids should belong to active sites and an effective method for predicting function should be able to recognize them. (C) 2012 Elsevier Ltd. All rights reserved.