12 resultados para wetting and drying cycles
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
Mechanical chiseling has been used to alleviate the effects of compaction in soils under no-tillage (NT). However, its effect on the soil physical properties does not seem to have a defined duration period. The purpose of this study was to evaluate the behavior of the bulk density (BD) and degree of compaction (DC) at different soil depths, after chiseling in no-tillage, for one year. The experiment was performed in Ponta Grossa, Paraná State, Brazil, using an Oxisol (Rhodic Hapludox). Bulk density and DC were previously measured in an area under NT for 16 years, then immediately after chiseling (CHI) in May 2009, six months after chiseling (CHI6M) in October 2009 and one year after chiseling (CHI12M) in May 2010. In the layers 0.0-0.10, 0.10-0.20 and 0.20-0.30 m, there was a significant BD reduction CHI and a marked increase CHI6M. The BD values measured CHI12M were similar to those before tillage. Chiseling reduced the DC in the layers 0.0-0.10 m and 0.10-0.20 m, but returned to the initial values one year later. During the evaluation periods CHI, CHI6M and CHI12M, the BD increased in the layer 0.30-0.40 m, compared with NT. The highest DC values were observed six months after chiseling; nevertheless the structural recovery of the soil was considerable, possibly due to the high degree of soil resilience and the influence of the wetting and drying cycles detected in the study period. The chiseling effects, evaluated by BD and DC, lasted less than one year, i.e., the beneficial short-term effects of chiseling on the reduction of the surface BD increased the risk of compaction in deeper soil layers.
Resumo:
A resiliência física de solos é proveniente de processos regenerativos que incluem ciclos de umedecimento e secamento, congelamento e descongelamento, assim como as atividades biológicas. Este estudo testou a hipótese de que as propriedades físicas do solo, como a permeabilidade do solo ao ar, densidade do solo, porosidade de aeração e porosidade total, são indicadores físicos eficientes para quantificar a resiliência de solos de diferentes texturas submetidos ao estresse mecânico (compactação) e após subsequentes ciclos de umedecimento e secamento. O objetivo foi avaliar o comportamento e a resiliência do solo por meio de propriedades físicas de dois Latossolos Vermelhos. Foram retiradas 25 amostras indeformadas (0,00-0,05 m) de dois solos: solo I, com textura argilosa, e solo II, com textura franco-argilo-arenosa, realizando as determinações das propriedades físicas nos tratamentos: antes da compactação (A), depois da compactação (C0) e após ciclos de umedecimento e secamento (C1, C2, C3 e C4). As propriedades densidade do solo e porosidade total não apresentaram recuperação da condição inicial após a compactação nos solos I e II; as propriedades conteúdo volumétrico de água e porosidade de aeração mostraram recuperação parcial apenas no solo I; e a permeabilidade do solo ao ar foi a propriedade que apresentou a melhor recuperação e a maior resiliência. Em relação ao distinto comportamento dos dois solos, observou-se que o solo I foi mais resiliente que o solo II nas propriedades que apresentaram recuperação.
Resumo:
Objectives: The aim of this study was to evaluate the variation in removal torque of implant prosthetic abutment screws after successive tightening and loosening cycles, in addition to evaluating the influence of the hexagon at the abutment base on screw removal torque. Material and methods: Twenty hexagonal abutments were tightened to 20 regular external hex implants with a titanium alloy screw, with an insertion torque of 32 N cm, measured with a digital torque gauge. The implant/abutment/screw assemblies were divided into two groups: ( 1) abutments without hexagon at the base and ( 2) abutments with a hexagon at the base. Each assembly received a provisional restoration and was submitted to mechanical loading cycles. After this, the screws were removed and the removal torque was measured. This sequence was repeated 10 times, then the screw was replaced by a new one, and another cycle was performed. Linear regression analysis was performed. Results: Removal torque values tended to decrease as the number of insertion/removal cycles increased, for both groups. Comparisons of the slopes and the intercepts between groups showed no statistical difference. There was no significant difference between the mean values of last five cycles and the 11th cycle. Within the limitations of this in vitro study, it was concluded that ( 1) repeated insertion/removal cycles promoted gradual reduction in removal torque of screws, ( 2) replacing the screw with a new one after 10 cycles did not increase resistance to loosening, and ( 3) removal of the hexagon from the abutment base had no effect on the removal torque of the screws.
Resumo:
The influence of deposition parameters, namely polymer concentration and pH of the deposition solution, cleaning, and drying steps on the morphology and electrical characteristics of polyaniline and sulfonated polystyrene (PANI/PSS) nanostructured films deposited by the self-assembly technique is evaluated by UV-Vis spectroscopy, optical and atomic force microscopy, and electrical resistance measurements. It is found that stirring the cleaning solution during the cleaning step is crucial for obtaining homogenous films. Stirring of the cleaning solution also influences the amount of PANI adsorbed in the films. In this regard, the drying process seems to be less critical since PANI amount and film thickness are similar in films dried with N-2 flow or with an absorbent tissue. It is observed, however, that drying with N-2 flow results in rougher films. As an additional point, an assessment of the influence of the deposition method (manual versus mechanical) on the film characteristics was carried out. A significant difference on the amount of PANI and film thickness between films prepared by different human operators and by a homemade mechanical device was observed. The variability in film thickness and PANI adsorbed amount is smaller in films mechanically assembled. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
Polythiophene (PTh) phase electropolymerized on the stainless steel wire was evaluated as solid-phase microextraction (SPME), and analysis by liquid chromatography with spectrophotometric detection (LC-UV) for determination of new-generation antidepressants, selective serotonin reuptake inhibitors (SSRIs) (citalopram, paroxetine, fluoxetine and sertraline), in plasma samples. The influence of electropolymerization variables (scan rate, potential range and scan cycles) was evaluated on SPME performance. The SPME variables (extraction time, temperature, matrix pH, ionic strength and desorption procedure), as well as the influence of plasma proteins on sorption mechanisms were also evaluated. The SPME/LC-UV method developed for determination of antidepressants in plasma sample presented a linear range between the limit of quantification (LOQ, 200-250 ng mL(-1)) to 4000 ng mL(-1), and interday precision with coefficient of variation (CV) ranged from 11 to 15%. The proposed method can be a useful tool for the determination of antidepressants in human plasma samples in urgent toxicological analysis after the accidental or suicidal intake of higher doses of medications.
Resumo:
The aim of the present study was to obtain microparticles of hydrochlorothiazide, a diuretic drug that practically insoluble in water, by spray drying and to investigate the influence of process parameters using a three-level, three-factor Box-Behnken design. Process yields, moisture content, particle size, flowability, and solubility were used to evaluate the spray-dried microparticles. The data were analyzed by response surface methodology using analysis of variance. The independent variables studied were outlet temperature, atomization pressure, and drug content. The formulations were prepared using polyvinylpyrrolidone and colloidal silicon dioxide as the hydrophilic carrier and drying aid, respectively. The microparticle yield ranged from 18.15 to 59.02% and resulted in adequate flow (17 to 32 degrees), moisture content between 2.52 to 6.18%, and mean particle size from 45 to 59 mu m. The analysis of variance showed that the factors studied influenced the yields, moisture content, angle of repose, and solubility. Thermal analysis and X-ray diffractometry evidenced no drug interactions or chemical modifications. Photomicrographs obtained by scanning electron microscopy showed spherical particles. The solubility and dissolution rates of hydrochlorothiazide were remarkably improved when compared with pure drug. Therefore, the results confirmed the high potential of the spray-drying technique to obtain microparticulate hydrochlorothiazide with enhanced pharmaceutical and dissolution properties.
Resumo:
Polythiophene (PTh) phase electropolymerized on the stainless steel wire was evaluated as solid-phase microextraction (SPME), and analysis by liquid chromatography with spectrophotometric detection (LC-UV) for determination of new-generation antidepressants, selective serotonin reuptake inhibitors (SSRIs) (citalopram, paroxetine, fluoxetine and sertraline), in plasma samples. The influence of electropolymerization variables (scan rate, potential range and scan cycles) was evaluated on SPME performance. The SPME variables (extraction time, temperature, matrix pH, ionic strength and desorption procedure), as well as the influence of plasma proteins on sorption mechanisms were also evaluated. The SPME/LC-UV method developed for determination of antidepressants in plasma sample presented a linear range between the limit of quantification (LOQ, 200-250 ng mL-1) to 4000 ng mL-1, and interday precision with coefficient of variation (CV) ranged from 11 to 15%. The proposed method can be a useful tool for the determination of antidepressants in human plasma samples in urgent toxicological analysis after the accidental or suicidal intake of higher doses of medications.
Resumo:
The aim of this paper is to verify the influence of composition variability of recycled aggregates (RA) of construction and demolition wastes (CDW) on the performance of concretes. Performance was evaluated building mathematical models for compressive strength, modulus of elasticity and drying shrinkage. To obtain such models, an experimental program comprising 50 concrete mixtures was carried out. Specimens were casted, tested and results for compressive strength, modulus of elasticity and drying shrinkage were statistically analyzed. Models inputs are CDW composition observed at seven Brazilian cities. Results confirm that using RA from CDW for concrete building is quite feasible, independently of its composition, once compressive strength and modulus of elasticity still reached considerable values. We concluded the variability presented by recycled aggregates of CDW does not compromise their use for concrete building. However, this information must be used with caution, and experimental tests should always be performed to certify concrete properties.
Resumo:
Scientists predict that global agricultural lands will expand over the next few decades due to increasing demands for food production and an exponential increase in crop-based biofuel production. These changes in land use will greatly impact biogeochemical and biogeophysical cycles across the globe. It is therefore important to develop models that can accurately simulate the interactions between the atmosphere and important crops. In this study, we develop and validate a new process-based sugarcane model (included as a module within the Agro-IBIS dynamic agro-ecosystem model) which can be applied at multiple spatial scales. At site level, the model systematically under/overestimated the daily sensible/latent heat flux (by -10.5% and 14.8%, H and E, respectively) when compared against the micrometeorological observations from southeast Brazil. The model underestimated ET (relative bias between -10.1% and 12.5%) when compared against an agro-meteorological field experiment from northeast Australia. At the regional level, the model accurately simulated average yield for the four largest mesoregions (clusters of municipalities) in the state of Sao Paulo, Brazil, over a period of 16 years, with a yield relative bias of -0.68% to 1.08%. Finally, the simulated annual average sugarcane yield over 31 years for the state of Louisiana (US) had a low relative bias (-2.67%), but exhibited a lower interannual variability than the observed yields.
Resumo:
The evapotranspiration (E) from a sugarcane plantation in the southeast Brazil was measured by the eddy-covariance method during two consecutive cycles. These represented the second (393 similar to days) and third year (374 similar to days) re-growth (ratoon). The total E in the first cycle was 829 similar to mm, accounting for 69% of rainfall, whereas in the second cycle, it was 690 similar to mm, despite the total rainfall (1353 similar to mm) being 13% greater. The ratio of E to available energy, the evaporative fraction, exhibited a smaller variation between the first and second cycles: 0.58 and 0.51, respectively. The estimated interception losses were 88 and 90 similar to mm, respectively, accounting for approximately 7% of the total rainfall. The sugarcane yield in the second cycle (61.5 similar to +/-similar to 4.0 similar to t similar to ha-1) was 26% lower than the first cycle, as well as lower than the regional average for the third ratoon (76 similar to t similar to ha-1). The below average yield was associated with less available soil water at the beginning of the cycle, with the amount of rainfall recorded during the first 120 similar to days of re-growth in the second cycle being 16% of that recorded in the first (203 similar to mm).
Resumo:
Air conditioning and lighting costs can be reduced substantially by changing the optical properties of "intelligent windows." The electrochromic devices studied to date have used copper as an additive. Copper, used here as an electrochromic material, was dissolved in an aqueous animal protein-derived gel electrolyte. This combination constitutes the electrochromic system for reversible electrodeposition. Cyclic voltammetry, chronoamperometric and chromogenic analyses indicated that were obtained good conditions of transparency (initial transmittance of 70%), optical reversibility, small potential window (2.1 V), variation of transmittance in visible light (63.6%) and near infrared (20%) spectral regions. Permanence in the darkened state was achieved by maintaining a lower pulse potential (-0.16 V) than the deposition potential (-1.0 V). Increasing the number of deposition and dissolution cycles favored the transmittance and photoelectrochemical reversibility of the device. The conductivity of the electrolyte (10(-3) S/cm) at several concentrations of CuCl2 was determined by electrochemical impedance spectroscopy. A thermogravimetric analysis confirmed the good thermal stability of the electrolyte, since the mass loss detected up to 100 degrees C corresponded to water evaporation and decomposition of the gel started only at 200 degrees C. Micrographic and small angle X-ray scattering analyses indicated the formation of a persistent deposit of copper particles on the ITO. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
Purpose: To evaluate the effect of a single intravitreal bevacizumab injection on visual acuity, contrast sensitivity and optical coherence tomography-measured central macular thickness in eyes with macular edema from branch retinal vein occlusion. Methods: Seventeen eyes of 17 patients with macular edema from unilateral branch retinal vein occlusion were treated with a single bevacizumab injection. Patients were submitted to a complete evaluation including best corrected visual acuity, contrast sensitivity and optical coherence tomography measurements before treatment and one and three months after injection. Visual acuity, contrast sensitivity and optical coherence tomography measurements were compared to baseline values. Results: Mean visual acuity measurement improved from 0.77 logMAR at baseline to 0.613 logMAR one month after injection (P=0.0001) but worsened to 0.75 logMAR after three months. Contrast sensitivity test demonstrated significant improvement at spatial frequencies of 3, 6, 12 and 18 cycles/degree one month after injection and at the spatial frequency of 12 cycles/degree three months after treatment. Mean +/- standard deviation baseline central macular thickness (552 +/- 150 mu m) reduced significantly one month (322 +/- 127 mu m, P=0.0001) and three months (439 perpendicular to 179 mu m, P=0.01) after treatment. Conclusions: Bevacizumab injection improves visual acuity and contrast sensitivity and reduces central macular thickness one month after treatment. Visual acuity returns to baseline levels at the 3-month follow-up, but some beneficial effect of the treatment is still present at that time, as evidenced by optical coherence tomography-measured central macular thickness and contrast sensitivity measurements.