6 resultados para virulence protein

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo


Relevância:

30.00% 30.00%

Publicador:

Resumo:

LigB is an adhesin from pathogenic Leptospira that is able to bind to extracellular matrix and is considered a virulence factor. A shotgun phage display genomic library was constructed and used for panning against Heparan Sulfate Proteoglycan (HSPG). A phage clone encoding part of LigB protein was selected in panning experiments and showed specific binding to heparin. To validate the selected clone, fragments of LigB were produced as recombinant proteins and showed affinity to heparin and to mammalian cells. Heparin was also able to reduce the binding of rLB-Ct to mammalian cells. Our data suggests that the glycosaminoglycan moiety of the HSPG is responsible for its binding and could mediate the attachment of the recombinant protein rLB-Ct. Thus, heparin may act as a receptor for Leptospira to colonize and to invade the host tissue. (C) 2012 Elsevier Inc. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Aspergillus fumigatus is a major opportunistic pathogen and allergen of mammals. Nutrient sensing and acquisition mechanisms, as well as the capability to cope with different stressing conditions, are essential for A. fumigatus virulence and survival in the mammalian host. This study characterized the A. fumigatus SebA transcription factor, which is the putative homologue of the factor encoded by Trichoderma atroviride seb1. The Delta sebA mutant demonstrated reduced growth in the presence of paraquat, hydrogen peroxide, CaCl2, and poor nutritional conditions, while viability associated with sebA was also affected by heat shock exposure. Accordingly, SebA:GFP (SebA:green fluorescent protein) was shown to accumulate in the nucleus upon exposure to oxidative stress and heat shock conditions. In addition, genes involved in either the oxidative stress or heat shock response had reduced transcription in the Delta sebA mutant. The A. fumigatus Delta sebA strain was attenuated in virulence in a murine model of invasive pulmonary aspergillosis. Furthermore, killing of the Delta sebA mutant by murine alveolar macrophages was increased compared to killing of the wild-type strain. A. fumigatus SebA plays a complex role, contributing to several stress tolerance pathways and growth under poor nutritional conditions, and seems to be integrated into different stress responses.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Successful international clones have recently emerged among Escherichia coli that produce CTX-M beta-lactamases as important causes of community-onset urinary tract and bloodstream infections. One hundred and seven isolates that belong to sequence types (STs) ST38, ST131, ST405, ST648, and 38 nonrelated CTX-M producing E. coli from Canada and the Netherlands were assigned to phylogenetic groups and tested for the presence of genes encoding for virulence factors (VFs) using established multiplex polymerase chain reaction. The STs E. coli were significantly more resistant to antibiotics-ST38, ST405, and ST648 belonged to phylogenetic group D while ST131 belonged to B2. Secreted autotransporter toxin (sat), aerobactin receptor, and pathogenicity island marker were significantly more common among the STs; the heat-resistant agglutinin (hra) was present in ST38, sat, and uropathogenic-specific protein, and putative adhesin-siderophore receptor was more common in ST131, while outer membrane protease T was present in ST648. ST131 had a significantly higher VF score. In conclusion, the precise role of these VFs remains to be elucidated; however, we have identified certain putative VFs that possibly contribute to the fitness and success of certain sequence types. (C) 2012 Elsevier Inc. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: Aggregatibacter actinomycetemcomitans serotypes are clearly associated with periodontitis or health, which suggests distinct strategies for survival within the host. Objective: We investigated the transcription profile of virulence-associated genes in A. actinomycetemcomitans serotype b (JP2 and SUNY 465) strains associated with disease and serotype a (ATCC 29523) strain associated with health. Design: Bacteria were co-cultured with immortalized gingival epithelial cells (OBA-9). The adhesion efficiency after 2 hours and the relative transcription of 13 genes were evaluated after 2 and 24 hours of interaction. Results: All strains were able to adhere to OBA-9, and this contact induced transcription of pgA for polysaccharide biosynthesis in all tested strains. Genes encoding virulence factors as Omp29, Omp100, leukotoxin, and CagE (apoptotic protein) were more transcribed by serotype b strains than by serotype a. ltxA and omp29, encoding the leukotoxin and the highly antigenic Omp29, were induced in serotype b by interaction with epithelial cells. Factors related to colonization (aae, flp, apaH, and pgA) and cdtB were upregulated in serotype a strain after prolonged interaction with OBA-9. Conclusion: Genes relevant for surface colonization and interaction with the immune system are regulated differently among the strains, which may help explaining their differences in association with disease.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Paracoccidoides brasiliensis adhesion to lung epithelial cells is considered an essential event for the establishment of infection and different proteins participate in this process. One of these proteins is a 30 kDa adhesin, pI 4.9 that was described as a laminin ligand in previous studies, and it was more highly expressed in more virulent P. brasiliensis isolates. This protein may contribute to the virulence of this important fungal pathogen. Using Edman degradation and mass spectrometry analysis, this 30 kDa adhesin was identified as a 14-3-3 protein. These proteins are a conserved group of small acidic proteins involved in a variety of processes in eukaryotic organisms. However, the exact function of these proteins in some processes remains unknown. Thus, the goal of the present study was to characterize the role of this protein during the interaction between the fungus and its host. To achieve this goal, we cloned, expressed the 14-3-3 protein in a heterologous system and determined its subcellular localization in in vitro and in vivo infection models. Immunocytochemical analysis revealed the ubiquitous distribution of this protein in the yeast form of P. brasiliensis, with some concentration in the cytoplasm. Additionally, this 14-3-3 protein was also present in P. brasiliensis cells at the sites of infection in C57BL/6 mice intratracheally infected with P. brasiliensis yeast cells for 72 h (acute infections) and 30 days (chronic infection). An apparent increase in the levels of the 14-3-3 protein in the cell wall of the fungus was also noted during the interaction between P. brasiliensis and A549 cells, suggesting that this protein may be involved in host-parasite interactions, since inhibition assays with the protein and this antibody decreased P. brasiliensis adhesion to A549 epithelial cells. Our data may lead to a better understanding of P. brasiliensis interactions with host tissues and paracoccidioidomycosis pathogenesis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The elongation factor Tu (EF-Tu), an abundant bacterial protein involved in protein synthesis, has been shown to display moonlighting activities. Known to perform more than one function at different times or in different places, it is found in several subcellular locations in a single organism, and may serve as a virulence factor in a range of important human pathogens. Here we demonstrate that Leptospira EF-Tu is surface-exposed and performs additional roles as a cell-surface receptor for host plasma proteins. It binds plasminogen in a dose-dependent manner, and lysine residues are critical for this interaction. Bound plasminogen is converted to active plasmin, which, in turn, is able to cleave the natural substrates C3b and fibrinogen. Leptospira EF-Tu also acquires the complement regulator Factor H (FH). FH bound to immobilized EF-Tu displays cofactor activity, mediating C3b degradation by Factor I (FI). In this manner, EF-Tu may contribute to leptospiral tissue invasion and complement inactivation. To our knowledge, this is the first description of a leptospiral protein exhibiting moonlighting activities