10 resultados para ventilatory response
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
Anuran amphibians are known to exhibit an intermittent pattern of pulmonary ventilation and to exhibit an increased ventilatory response to hypoxia and hypercarbia. However, only a few species have been studied to date. The aquatic frog Pipa carvalhoi inhabits lakes, ponds and marshes that are rich in nutrients but low in O-2. There are no studies of the respiratory pattern of this species and its ventilation during hypoxia or hypercarbia. Accordingly, the aim of the present study was to characterize the breathing pattern and the ventilatory response to aquatic and aerial hypoxia and hypercarbia in this species. With this purpose, pulmonary ventilation (V-1) was directly measured by the pneumotachograph method during normocapnic normoxia to determine the basal respiratory pattern and during aerial and aquatic hypercarbia (5% CO2) and hypoxia (5% O-2). Our data demonstrate that P. carvalhoi exhibits a periodic breathing pattern composed of single events (single breaths) of pulmonary ventilation separated by periods of apnea. The animals had an enhanced V-1 during aerial hypoxia, but not during aquatic hypoxia. This increase was strictly the result of an increase in the breathing frequency. A pronounced increase in V-1 was observed if the animals were simultaneously exposed to aerial and aquatic hypercarbia, whereas small or no ventilatory responses were observed during separately administered aerial or aquatic hypercarbia. P. carvalhoi primarily inhabits an aquatic environment. Nevertheless, it does not respond to low O-2 levels in water, although it does so in air. The observed ventilatory responses to hypercarbia may indicate that this species is similar to other anurans in possessing central chemoreceptors. (C) 2012 Elsevier Inc. All rights reserved.
Resumo:
The periaqueductal gray (PAG) is a midbrain structure directly involved in the modulation of defensive behaviors. It has direct projections to several central nuclei that are involved in cardiorespiratory control. Although PAG stimulation is known to elicit respiratory responses, the role of the PAG in the CO2-drive to breathe is still unknown. The present study assessed the effect of chemical lesion of the dorsolateral and dorsomedial and ventrolateral/lateral PAG (dlPAG, dmPAG, and vPAG, respectively) on cardiorespiratory and thermal responses to hypercapnia. Ibotenic acid (IBO) or vehicle (PBS, Sham group) was injected into the dlPAG, dmPAG, or vPAG of male Wistar rats. Rats with lesions outside the dlPAG, dmPAG, or vPAG were considered as negative controls (NC). Pulmonary ventilation (Ve), mean arterial pressure (MAP), heart rate (HR), and body temperature (Tb) were measured in unanesthetized rats during normocapnia and hypercapnic exposure (5, 15, 30 min, 7 % CO2). IBO lesioning of the dlPAG/dmPAG caused 31 % and 26.5 % reductions of the respiratory response to CO2 (1,094.3 +/- 115 mL/kg/min) compared with Sham (1,589.5 +/- 88.1 mL/kg/min) and NC groups (1,488.2 +/- 47.7 mL/kg/min), respectively. IBO lesioning of the vPAG caused 26.6 % and 21 % reductions of CO2 hyperpnea (1,215.3 +/- 108.6 mL/kg/min) compared with Sham (1,657.3 +/- 173.9 mL/kg/min) and NC groups (1,537.6 +/- 59.3). Basal Ve, MAP, HR, and Tb were not affected by dlPAG, dmPAG, or vPAG lesioning. The results suggest that dlPAG, dmPAG, and vPAG modulate hypercapnic ventilatory responses in rats but do not affect MAP, HR, or Tb regulation in resting conditions or during hypercapnia.
Resumo:
The medullary raphe (MR) is a putative central chemoreceptor site, contributing to hypercapnic respiratory responses elicited by changes in brain PCO2/pH. Purinergic mechanisms in the central nervous system appear to contribute to central chemosensitivity. To further explore the role of P2 receptors within the rostral and caudal MR in relation to respiratory control in room air and hypercapnic conditions, we performed microinjections of PPADS, a non-selective P2X antagonist, in conscious rats. Microinjections of PPADS into the rostral or caudal MR produced no changes in the respiratory frequency, tidal volume and ventilation in room air condition. The ventilatory response to hypercapnia was attenuated after microinjection of PPADS into the rostral but not in the caudal MR when compared to the control group (vehicle microinjection). These data suggest that P2X receptors in the rostral MR contribute to the ventilatory response to CO2, but do not participate in the tonic maintenance of ventilation under room air condition in conscious rats. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
Chemosensitive neurons in the retrotrapezoid nucleus (RTN) regulate breathing in response to CO2/H+ changes. Their activity is also sensitive to neuromodulatory inputs from multiple respiratory centers, and thus they serve as a key nexus of respiratory control. However, molecular mechanisms that control their activity and susceptibility to neuromodulation are unknown. Here, we show in vitro and in vivo that KCNQ channels are critical determinants of RTN neural activity. In particular, we find that pharmacological block of KCNQ channels (XE991, 10 mu M) increased basal activity and CO2 responsiveness of RTN neurons in rat brain slices, whereas KCNQ channel activation (retigabine, 2-40 mu M) silenced these neurons. Interestingly, we also find that KCNQ and apamin-sensitive SK channels act synergistically to regulate firing rate of RTN chemoreceptors; simultaneous blockade of both channels led to a increase in CO2 responsiveness. Furthermore, we also show that KCNQ channels but not SK channels are downstream effectors of serotonin modulation of RTN activity in vitro. In contrast, inhibition of KCNQ channel did not prevent modulation of RTN activity by Substance P or thyrotropin-releasing hormone, previously identified neuromodulators of RTN chemoreception. Importantly, we also show that KCNQ channels are critical for RTN activity in vivo. Inhibition of KCNQ channels lowered the CO2 threshold for phrenic nerve discharge in anesthetized rats and decreased the ventilatory response to serotonin in awake and anesthetized animals. Given that serotonergic dysfunction may contribute to respiratory failure, our findings suggest KCNQ channels as a new therapeutic avenue for respiratory complications associated with multiple neurological disorders.
Resumo:
Central chemoreception is the mechanism by which the brain regulates breathing in response to changes in tissue CO2/H+. Abrainstemregion called the retrotrapezoid nucleus (RTN) contains a population of CO2/H+-sensitive neurons that appears to function as an important chemoreceptor. Evidence also indicates that CO2-evoked ATP release from RTN astrocytes modulates activity of CO2/H+-sensitive neurons; however, the extent to which purinergic signalling contributes to chemoreception by RTN neurons is not clear and the mechanism(s) underlying CO2/H+-evoked ATP release is not fully elucidated. The goals of this study are to determine the extent to which ATP contributes to RTN chemoreception both in vivo and in vitro, andwhether purinergic drive to chemoreceptors relies on extracellularCa(2+) or gap junction hemichannels. We also examine the possible contribution of P2Y1 receptors expressed in theRTNto the purinergic drive to breathe. We showthat purinergic signalling contributes, in part, to the CO2/H+ sensitivity of RTN neurons. In vivo, phrenic nerve recordings of respiratory activity in adult rats show that bilateral injections of pyridoxal-phosphate-6-azophenyl-2',4'-disulfonate (PPADS, a P2 receptor blocker) decreased the ventilatory response to CO2 by 30%. In vitro, loose-patch recordings from RTN neurons show that P2 receptor blockers decreased responsiveness to both 10% and 15% CO2 also by 30%. In the slice, the contribution of purinergic signalling to RTN chemoreception did not increase with temperature (22-35 degrees C) and was retained in low extracellular Ca2+ medium. Conversely, the gap junction blockers carbenoxolone and cobalt decreased neuronal CO2/H+ sensitivity by an amount similar to P2 receptor antagonists. Inhibition of the P2Y1 receptor in the RTN had no effect on CO2 responsivness in vitro or in vivo; thus, the identity of P2 receptors underlying the purinergic component of RTN chemoreception remains unknown. These results support the possibility that CO2/H+-evoked ATP release is mediated by a mechanism involving gap junction hemichannels.
Resumo:
Aim: It has been suggested that the medullary raphe (MR) plays a key role in the physiological responses to hypoxia. As opioid mu-receptors have been found in the MR, we studied the putative role of opioid mu-receptors in the rostral MR (rMR) region on ventilation in normal and 7% hypoxic conditions. Methods: We measured pulmonary ventilation ((V) over dotE) and the body temperatures (Tb) of male Wistar rats before and after the selective opioid l-receptor antagonist CTAP ( d-Phe-Cys-Tyr-d-Trp-Arg-Thr-Pen-Thr-NH2, cyclic, 0.1 mu g per 0.1 mu L) was microinjected into the rMR during normoxia or after 60 min of hypoxia. Results: The animals treated with intra-rMR CTAP exhibited an attenuation of the ventilatory response to hypoxia ( 430 +/- 86 mL kg) 1 min) 1) compared with the control group ( 790 +/- 82 mL kg) 1 min) 1) ( P < 0.05). No differences in the Tb were observed between groups during hypoxia. Conclusion: These data suggest that opioids acting on l-receptors in the rMR exert an excitatory modulation of hyperventilation induced by hypoxia.
Resumo:
In Ostariophysan fish, the detection of the alarm substance liberated into the water as a consequence of an attack by a predator elicits an alarm reaction or anti-predatory behavior. In this study, experiments were performed to: (i) describe and quantitatively characterize the behavioral and ventilatory responses in piaucu fish (Leporinus macrocephalus), individually and as part of a school, to conspecific alarm substance (CAS) and; (ii) test the effect of acute fluoxetine treatment on alarm reaction. Histological analysis revealed the presence of club cells in the intermediate and superficial layers of the epidermis. The predominant behavioral response to CAS was freezing for fish held individually, characterized by the cessation of the swimming activity as the animal settles to a bottom corner of the aquarium. Fish exposed to CAS showed decrease in the mean ventilatory frequency (approximately 13%) relative to control. In schools, CAS elicited a biphasic response that was characterized by erratic movements followed by increased school cohesion and immobility, reflected as an increased school cohesion (65.5% vs. -5.8% for controls) and in the number of animals near the bottom of the aquarium (42.0% vs. 6.5% for controls). Animals treated with single i.p. injections of fluoxetine (10 mu g/g b.w.) did not exhibit alarm behavior following CAS stimulation. These results show that an alarm pheromone system is present in piaucu fish, evidenced by the presence of epidermal club cells and an alarm reaction induced by CAS and consequently of a chemosensory system to transmit the appropriate information to neural structures responsible for initiating anti-predator behavioral responses. In addition, fluoxetine treatment caused an anxiolytic-like effect following CAS exposure. Thus, the alarm reaction in piaucu can be a useful model for neuroethological and pharmacological studies of anxiety-related states. (C) 2011 Elsevier Inc. All rights reserved.
Resumo:
Background: This study assessed the relationship between lower limb hemodynamics and metabolic parameters with walking tolerance in patients with intermittent claudication (IC). Patients and methods: Resting ankle-brachial index (ABI), baseline blood flow (BF), BF response to reactive hyperemia (BFRH), oxygen uptake (VO2), initial claudication distance (ICD) and total walking distance (TWD) were measured in 28 IC patients. Pearson and Spearman correlations were calculated. Results: ABI, baseline BF and BF response to RH did not correlate with ICD or TWD. VO2 at first ventilatory threshold and VO(2)peak were significantly and positively correlated with ICD (r = 0.41 and 0.54, respectively) and TWD (r = 0.65 and 0.71, respectively). Conclusions: VO(2)peak and VO2 at first ventilatory threshold, but not ABI, baseline BF and BFHR were associated with walking tolerance in IC patients. These results suggest that VO2 at first ventilatory threshold may be useful to evaluate walking tolerance and improvements in IC patients.
Resumo:
OBJECTIVE: The purpose of this study was to evaluate the following: 1) the effects of continuous exercise training and interval exercise training on the end-tidal carbon dioxide pressure (PETCO2) response during a graded exercise test in patients with coronary artery disease; and 2) the effects of exercise training modalities on the association between PETCO2 at the ventilatory anaerobic threshold (VAT) and indicators of ventilatory efficiency and cardiorespiratory fitness in patients with coronary artery disease. METHODS: Thirty-seven patients (59.7 +/- 1.7 years) with coronary artery disease were randomly divided into two groups: continuous exercise training (n = 20) and interval exercise training (n = 17). All patients performed a graded exercise test with respiratory gas analysis before and after three months of the exercise training program to determine the VAT, respiratory compensation point (RCP) and peak oxygen consumption. RESULTS: After the interventions, both groups exhibited increased cardiorespiratory fitness. Indeed, the continuous exercise and interval exercise training groups demonstrated increases in both ventilatory efficiency and PETCO2 values at VAT, RCP, and peak of exercise. Significant associations were observed in both groups: 1) continuous exercise training (PETCO(2)VAT and cardiorespiratory fitness r = 0.49; PETCO(2)VAT and ventilatory efficiency r = -0.80) and 2) interval exercise training (PETCO(2)VAT and cardiorespiratory fitness r = 0.39; PETCO(2)VAT and ventilatory efficiency r = -0.45). CONCLUSIONS: Both exercise training modalities showed similar increases in PETCO2 levels during a graded exercise test in patients with coronary artery disease, which may be associated with an improvement in ventilatory efficiency and cardiorespiratory fitness.
Resumo:
The ventilation rate (VR) of an ostariophysan fish, the speckled catfish Pseudoplaty - stoma coruscans, exposed to a chemical alarm cue was measured in the present study in multiple contexts. The influence of the extraction techniques, skin donor food intake and quantity of the alarm cue (skin extract) on this autonomic response was considered. Overall, the catfish VR decreased significantly when exposed to the skin extract (chemical alarm cue) compared with exposure to distilled water (control). No effect of the extraction technique was found. Increasing doses of the skin extract induced a VR reduction of similar magnitude. However, extract obtained from daily-fed fish induced a significant decrease in the VR, whereas extract obtained from foodrestricted fish did not induce any change in the VR. Thus, food intake was associated with the production of a more easily recognizable alarm cue in the speckled catfish. Interestingly, this effect was not related to differences in the number of club cells in the donor catfish epidermis. Dashing, or rapid swimming, a normal component of the alarm response in fish, including this catfish species, was not observed here, and hypoventilation was always associated with no swimming reaction. Together, these results suggest that hypoventilation is a reaction to a chemical alarm cue, likely resulting in improved crypsis, causing the fish to become less easily perceived by a potential predator that usually strikes prey in response to movement.