20 resultados para tree species richness and composition
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
The Brazilian Atlantic forest is considered one of the world's biodiversity conservation hotspot. Today there is less than ten percent remaining. Therefore it is necessary to restore these ecosystems. There are many ways of achieving restoration's main goals, but there is a lack of ecological studies that analyzes tree species richness as a variable. Thus, this study's goal is to investigate if there is a difference between a forest restoration in a gradient of tree species richness that varies from 20, 60 to 120 species, by using the litterfall as an indicator. Every month, for one year the forest litter was collected from litter traps that were previously installed. Results revealed that stands produced litterfall by the increasing gradient of species was of 5,370, 5,909 and 6,432 kg ha(-1) yr(-1). The statistical analyses revealed no significant difference among them. Therefore this six-year-old forest restoration plantation shows no difference on the litter production by the tree species richness.
Resumo:
Theoretical and empirical studies demonstrate that the total amount of forest and the size and connectivity of fragments have nonlinear effects on species survival. We tested how habitat amount and configuration affect understory bird species richness and abundance. We used mist nets (almost 34,000 net hours) to sample birds in 53 Atlantic Forest fragments in southeastern Brazil. Fragments were distributed among 3 10,800-ha landscapes. The remaining forest in these landscapes was below (10% forest cover), similar to (30%), and above (50%) the theoretical fragmentation threshold (approximately 30%) below which the effects of fragmentation should be intensified. Species-richness estimates were significantly higher (F = 3715, p = 0.00) where 50% of the forest remained, which suggests a species occurrence threshold of 30-50% forest, which is higher than usually occurs (<30%). Relations between forest cover and species richness differed depending on species sensitivity to forest conversion and fragmentation. For less sensitive species, species richness decreased as forest cover increased, whereas for highly sensitive species the opposite occurred. For sensitive species, species richness and the amount of forest cover were positively related, particularly when forest cover was 30-50%. Fragment size and connectivity were related to species richness and abundance in all landscapes, not just below the 30% threshold. Where 10% of the forest remained, fragment size was more related to species richness and abundance than connectivity. However, the relation between connectivity and species richness and abundance was stronger where 30% of the landscape was forested. Where 50% of the landscape was forested, fragment size and connectivity were both related to species richness and abundance. Our results demonstrated a rapid loss of species at relatively high levels of forest cover (30-50%). Highly sensitive species were 3-4 times more common above the 30-50% threshold than below it; however, our results do not support a unique fragmentation threshold.
Resumo:
The forest-like characteristics of agroforestry systems create a unique opportunity to combine agricultural production with biodiversity conservation in human-modified tropical landscapes. The cacao-growing region in southern Bahia, Brazil, encompasses Atlantic forest remnants and large extensions of agroforests, locally known as cabrucas, and harbors several endemic large mammals. Based on the differences between cabrucas and forests, we hypothesized that: (1) non-native and non-arboreal mammals are more frequent, whereas exclusively arboreal and hunted mammals are less frequent in cabrucas than forests; (2) the two systems differ in mammal assemblage structure, but not in species richness; and (3) mammal assemblage structure is more variable among cabrucas than forests. We used camera-traps to sample mammals in nine pairs of cabruca-forest sites. The high conservation value of agroforests was supported by the presence of species of conservation concern in cabrucas, and similar species richness and composition between forests and cabrucas. Arboreal species were less frequently recorded, however, and a non-native and a terrestrial species adapted to open environments (Cerdocyon thous) were more frequently recorded in cabrucas. Factors that may overestimate the conservation value of cabrucas are: the high proportion of total forest cover in the study landscape, the impoverishment of large mammal fauna in forest, and uncertainty about the long-term maintenance of agroforestry systems. Our results highlight the importance of agroforests and forest remnants for providing connectivity in human-modified tropical forest landscapes, and the importance of controlling hunting and dogs to increase the value of agroforestry mosaics.
Resumo:
The effects of habitat configuration on species persistence are predicted to be most apparent when remaining habitat cover is below 30%. We tested this prediction by comparing vertebrate communities in 21 landscapes located in the southern Amazonia, including 7 control landscapes (similar to 100% of forest cover) and 14 fragmented landscapes (4 x 4 km). The fragmented landscapes retained similar proportions of forest (similar to 25%), but had contrasting configurations, resulting from two different deforestation patterns: the "fish-bone pattern" common in small properties, and the large-property pattern generally used by large ranchers. Vertebrates were surveyed in all landscapes in February-July 2009 with interviews (n = 150). We found a significant difference in reported species richness among the fish-bone, large-property, and control areas (mean = 29.3, 38.8 and 43.5 respectively). Control areas and large-properties tended to have a higher number of specialist species (mean = 13.7, and 11.7, respectively), when compared with the fish-bone pattern (5.1). Vertebrate community composition in the control and large-properties was more similar to one another than to those of the fish-bone landscapes. The number of fragments was the main factor affecting the persistence of species, being negatively associated with specialist species richness. Species richness was also positively related with the size of the largest fragment structurally connected to the studied landscapes (i.e., a regional scale effect). Our results demonstrated that the large-property pattern, which results in less fragmented landscapes, can maintain a more diverse community of large vertebrates, including top predators, which are considered fundamental for maintaining ecosystem integrity. These results support the hypothesis that landscape configuration contributes to the persistence and/or extirpation of species.
Resumo:
In tropical forests, the environmental heterogeneity can provide niche partitioning at local scales and determine the diversity and plant species distribution. Thus, this study aimed to investigate the variations of tree species structure and distribution in response to relief and soil profile features in a portion of the largest remnant of Brazilian Atlantic rain forest. All trees >= 5 cm diameter at breast height were recorded in two 0.99 ha plots. Topographic survey and a soil characterization were accomplished in both plots. Topsoil samples (0-20 cm) were taken from 88 quadrats and analyzed for chemical and particle size properties. Differences for both diversity and tree density were identified among three kinds of soils. A canonical correspondence analysis (CCA) indicated that the specific abundance varied among the three kinds of soils mapped: a shallow Udept - Orthent / Aquent gradient, probably due to differences in soil drainage. Nutrient content was less likely to affect tree species composition and distribution than relief, pH, Al3+, and soil texture. Some species were randomly distributed and did not show restriction to relief and soil properties. However, preferences in niche occupation detected in this study, derived from the catenary environments found, rise up as an important explanation for the high tree species diversity in tropical forests.
Resumo:
This study extends the current knowledge regarding the use of plants for the passive accumulation of anthropogenic PAHs that are present in the atmospheric total suspended particles (TSP) in the tropics and sub-tropics. It is of major relevance because the anthropic emissions of TSP containing PAHs are significant in these regions, but their monitoring is still scarce. We compared the biomonitor efficiency of Lolium multiflorum 'Lema' and tropical tree species (Tibouchina pukka and Psidium guajava 'Paluma') that were growing in an intensely TSP-polluted site in Cubatao (SE Brazil), and established the species with the highest potential for alternative monitoring of PAHs. PAHs present in the TSP indicated that the region is impacted by various emission sources. L. multiflorum showed a greater efficiency for the accumulation of PAH compounds on their leaves than the tropical trees. The linear regression between the logBCF and logKoa revealed that L. multiflorum is an efficient biomonitor of the profile of light and heavy PAHs present in the particulate phase of the atmosphere during dry weather and mild temperatures. The grass should be used only for indicating the PAHs with higher molecular weight in warmer and wetter periods. (C) 2012 Elsevier Inc. All rights reserved.
Resumo:
This study investigates the species richness and abundance of Drosophila Fallén, 1823 attracted to dung and carrion baited pitfall traps in natural areas with heterogeneous habitats at the Sierra de Minas, Eastern Serranías, southeastern Uruguay. Collecting was carried out on a monthly basis (May 2002 through April 2003). Drosophilids accounted for 0.84% (n = 131) and 3.61% (n = 158) of the Diptera collected from dung (n = 15,630) and carrion (n = 4,382) pitfall traps, respectively. A total of 12 species were identified, 11 of which belong to the subgenus Drosophila (the richest) and one to the subgenus Sophophora Sturtevant, 1939. Over 90% of the Drosophila specimens collected belong to five species of the subgenus Drosophila, namely D. gaucha Jaeger & Salzano, 1953, D. immigrans Sturtevant, 1921, D. mediovittata Frota-Pessoa, 1954, D. aff. nappae Vilela, Valente & Basso-da-Silva, 2004, and D. ornatifrons Duda, 1927. Drosophila cardini Sturtevant, 1916 is recorded for the first time from Uruguay. Drosophila abundance and species richness in the four habitats sampled in the Uruguayan Eastern Serranías, namely woodlands sierra, riparian forest, pine plantation and grazing grassland, were considered to be a function of habitat conservation. Diversity indices were low in all habitats. Different habitats supported particular coprophilous and necrophilous Drosophila species. The woodland sierra represents the most preserved habitat, and contributed with the highest species richness observed. Drosophila ornatifrons was the dominant species, with a restricted habitat distribution. On the other hand, grazed grassland, an environment modified by livestock management, had the lowest species richness: only a few specimens of D. repleta Wollaston, 1858. Regarding species composition, significant differences were found in some pairwise comparisons of groups of Drosophila species that included D. ornatifrons. Fly attraction to dung can be exploited as an alternative and/or complementary collecting method in ecological studies of Drosophila assemblages in natural areas.
Resumo:
We tested the early performance of 16 native early-, mid-, and late-successional tree species in response to four intensities of grass removal in an abandoned cattle pasture dominated by the introduced, invasive African grass, Cynodon plectostachyus, within the Lacandon rainforest region, southeast Mexico. The increase in grass removals significantly improved the performance of many species, especially of early-and mid-successional species, while performance of late-successional species was relatively poor and did not differ significantly among treatments. Good site preparation and at least one additional grass removal four months after seedling transplant were found to be essential; additional grass removals led to improved significantly performance of saplings in most cases. In order to evaluate the potential of transplanting tree seedlings successfully in abandoned tropical pastures, we developed a "planting risk index", combining field performance measurements and plantation cost estimations. Our results showed a great potential for establishing restoration plantings with many early-and mid-successional species. Although planting risk of late-successional species was considered high, certain species showed some possibilities of acclimation after 18 months and should be considered in future plantation arrangements in view of their long-term contributions to biodiversity maintenance and also to human welfare through delivery of ecosystem services. Conducting a planting risk analysis can help avoid failure of restoration strategies involving simultaneous planting of early-, mid-, and late-successional tree species. This in turn will improve cost-effectiveness of initial interventions in large-scale, long-term restoration programs.
Resumo:
The rainforest of Mexico has been degraded and severely fragmented, and urgently require restoration. However, the practice of restoration has been limited by the lack of species-specific data on survival and growth responses to local environmental variation. This study explores the differential performance of 14 wet tropical early-, mid- or late-successional tree species that were grown in two abandoned pastures with contrasting land-use histories. After 18 months, seedling survival and growth of at least 7 of the 14 tree species studied were significantly higher in the site with a much longer history of land use (site 2). Saplings of the three early-successional species showed exceptional growth rates. However, differences in performance were noted in relation to the differential soil properties between the experimental sites. Mid-successional species generally showed slow growth rates but high seedling survival, whereas late-successional species exhibited poor seedling survival at both the study sites. Stepwise linear regressions revealed that the species integrated response index combining survivorship and growth measurements, was influenced mostly by differences in soil pH between the two abandoned pastures. Our results suggest that local environmental variation among abandoned pastures of contrasting land-use histories influences sapling survival and growth. Furthermore, the similarity of responses among species with the same successional status allowed us to make some preliminary site and species-specific silvicultural recommendations. Future field experiments should extend the number of species and the range of environmental conditions to identify site generalists or more narrowly adapted species, that we would call sensitive.
Resumo:
Premise of the study: We developed and characterized nuclear microsatellite markers for Anadenanthera colubrina, a tropical tree species widely distributed in South America. Methods and Results: Leaf samples of mature A. colubrina trees, popularly called "angico," were collected from an area that is greatly impacted by agricultural practices in the region of Ribeirao Preto in Sao Paulo State in southeastern Brazil. Twenty simple sequence repeat (SSR) markers were developed, 14 of which had polymorphic loci. A total of 96 alleles were detected with an average of 6.86 alleles per polymorphic locus. The expected heterozygosity, calculated at polymorphic loci, ranged from 0.18 to 0.83. Finally, we demonstrated that 18 loci were cross-amplified in A. peregrina. Conclusions: A total of 14 polymorphic markers suggest a high potential for genetic diversity, gene flow, and mating system analyses in A. colubrina.
Resumo:
Structure of intertidal and subtidal benthic macrofauna in the northeastern region of Todos os Santos Bay (TSB), northeast Brazil, was investigated during a period of two years. Relationships with environmental parameters were studied through uni- and multivariate statistical analyses, and the main distributional patterns shown to be especially related to sediment type and content of organic fractions (Carbon, Nitrogen, Phosphorus), on both temporal and spatial scales. Polychaete annelids accounted for more than 70% of the total fauna and showed low densities, species richness and diversity, except for the area situated on the reef banks. These banks constitute a peculiar environment in relation to the rest of the region by having coarse sediments poor in organic matter and rich in biodetritic carbonates besides an abundant and diverse fauna. The intertidal region and the shallower area nearer to the oil refinery RLAM, with sediments composed mainly of fine sand, seem to constitute an unstable system with few highly dominant species, such as Armandia polyophthalma and Laeonereis acuta. In the other regions of TSB, where muddy bottoms predominated, densities and diversity were low, especially in the stations near the refinery. Here the lowest values of the biological indicators occurred together with the highest organic compound content. In addition, the nearest sites (stations 4 and 7) were sometimes azoic. The adjacent Caboto, considered as a control area at first, presented low density but intermediate values of species diversity, which indicates a less disturbed environment in relation to the pelitic infralittoral in front of the refinery. The results of the ordination analyses evidenced five homogeneous groups of stations (intertidal; reef banks; pelitic infralittoral; mixed sediments; Caboto) with different specific patterns, a fact which seems to be mainly related to granulometry and chemical sediment characteristics.
Resumo:
To assess the impact and fate of the summer phytoplankton bloom on Antarctic benthos, we evaluated temporal and spatial patterns in macrofaunal abundance and taxonomic composition along a transect crossing the West Antarctic Peninsula (WAP) continental shelf As part of the FOODBANCS project, we sampled three sites at 550-625 m depths during five cruises occurring in November 1999, February-March 2000, June 2000, October 2000 and March 2001. We used a combination of megacore and box-core samplers to take 81 samples, and collected over 30,000 macrofaunal individuals, one of the largest sampling efforts on the Antarctic shelf to date. Comparison of the two sampling methodologies (box core and megacore) indicates similar macrofaunal densities, but with significant differences in taxonomic composition, a reflection of the different spatial scales of sampling. Macrorfaunal abundances on the WAP shelf were relatively high compared to other Antarctic shelf settings. At two of the three sampling sites, macrofaunal abundance remained constant throughout the year, which is consistent with the presence of a sediment `food bank`. Differences were observed in taxonomic composition at the site closest to the coast (Station A), driven by higher abundances of subsurface-deposit feeders. A significant temporal response was observed in the ampharetid polychaetes at Station A, with an abundance peak in the late fall post-bloom period; this may have resulted from juvenile recruitment during the summer bloom. Familial composition of macrofaunal polychaetes on the WAP shelf is more closely related to deep-sea abyssal fauna than to other shelf regions, and we hypothesize that this is a result of both local ecological conditions (low temperatures) and a reflection of historical processes such as extinctions on the Antarctic shelf during previous glacial maxima followed by recolonization from the deep sea. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
The West Antarctic Peninsula (WAP) shelf experiences intense seasonal and interannual variability in phytoplankton production and particulate-organic-carbon flux to the seafloor. To explore the response of the megabenthic community to this production variability, we conducted video surveys of epibenthic megafauna at three stations on the WAP shelf in Nov-Dec 1999, Mar 2000, Jun 2000, Oct-Nov 2000, and Feb-Mar 2001. The epibenthic megafauna was dominated (>90%) by elasipod holothurians, irregular urchins and anthozoans, with total abundances ranging from 19 to 152 ind. 1 00 m(-2). The abundance of three of the dominant taxa (Protelpidia murrayi, Peniagone vignomi, and Amphipneustes spp.) varied significantly across seasons (p <0.05), although variations were not tightly correlated with the summer bloom cycle. The irregular urchins in the genus Amphipneustes varied 5-fold in abundance at single stations, with maximum densities (an average of 10.1 ind. 100 m(-2)) attained in Jun 2000. Abundances of the elasipod holothurians P. murrayi (1-121 ind. 100 m(-2)) and P. vignoni (0.7-27.5 ind. 100 m(-2)) fell within the range for elasipod holothurians from other bathyal regions measured using image analysis. The abundance of P. murrayi increased up to 6-fold from a single Jun-Oct recruitment pulse, while changes in the abundance of P. vignoni (over 2-fold higher in Feb-Mar 2001) apparently resulted from immigration during the presence of a 1-2 cm thick carpet of fresh phytocletritus. Based on the ratio of the number of fecal casts per individual, elasipod holothurians increased surface-deposit feeding rates by >= 2-fold while phytocletritus was present at the seafloor. Nonetheless, these surface-deposit feeders appeared to feed and egest sediments throughout the winter, which is consistent with year-round persistence of a labile food bank in surficial sediments on the deep WAP shelf.
Resumo:
This study evaluated the effects of the organic loading rate (OLR) and pH buffer addition on hydrogen production in two anaerobic fluidized bed reactors (AFBRs) operated simultaneously. The AFBRs were fed with glucose, and expanded clay was used as support material. The reactors were operated at a temperature of 30 degrees C, without the addition of a buffer (AFBR1) and with the addition of a pH buffer (AFBR2, sodium bicarbonate) for OLRs ranging from 19.0 to 140.6 kg COD m(-3) d(-1) (COD: chemical oxygen demand). The maximum hydrogen yields for AFBR1 and AFBR2 were 2.45 and 1.90 mol H-2 mol(-1) glucose (OLR of 84.3 kg COD m(-3) d(-1)), respectively. The highest hydrogen production rates were 0.95 and 0.76 L h(-1) L-1 for AFBR1 and AFBR2 (OLR of 140.6 kg COD m(-3) d(-1)), respectively. The operating conditions in AFBR1 favored the presence of such bacteria as Clostridium, while the bacteria in AFBR2 included Clostridium, Enterobacter, Klebsiella, Veillonellaceae, Chryseobacterium, Sporolactobacillus, and Burkholderiaceae. Copyright (C) 2012, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.
Resumo:
Rice bran oil was obtained from rice bran by solvent extraction using ethanol. The influence of process variables, solvent hydration (0-24% of water, on mass basis), temperature (60-90 degrees C), solvent-to-rice bran mass ratio (2.5:1 to 4.5:1) and stirrer speed (100-250 rpm) were analysed using the response surface methodology. The extraction yield was highly affected by the solvent water content, and it varied from 8.56 to 20.05 g of oil/100 g of fresh rice bran (or 42.7-99.9% of the total oil available) depending on the experimental conditions. It was observed that oryzanol and tocols behave in different ways during the extraction process. A larger amount of tocols is extracted from the solid matrix in relation to gamma-oryzanol. It was possible to obtain values from 123 to 271 mg of tocols/kg of fresh rice bran and 1527 to 4164 mg of oryzanol/kg of fresh rice bran, indicating that it is feasible to obtain enriched oil when this renewable solvent is used. No differences in the chemical composition of the extracted oils were observed when compared to the data cited in the literature. (C) 2011 The Institution of Chemical Engineers. Published by Elsevier B.V. All rights reserved.