3 resultados para technology support

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Background data: The presence of Streptococcus mutans and Lactobacillus acidophilus in dental structure is an indicator of a cariogenic biofilm. Photodynamic therapy is a technique that involves the activation of photosensitizers by light in the presence of oxygen, resulting in the production of reactive radicals capable of inducing cell death. Reduction of bacteria levels can provide additional means of preventing dental caries. Objective: The present study evaluated the susceptibility of planktonic cultures of S. mutans (ATCC 25175) and L. acidophilus (ATCC-IAL-523) from the Adolfo Lutz Institute (IAL) to photodynamic therapy after sensitization with curcumin and exposure to blue light at 450 nm. Methods: Bacterial suspensions of S. mutans and L. acidophilus isolated (as single species) and combined (multspecies) were prepared and then evaluated. Four different groups were analyzed: L-D- (control group), L-D+ (drug group), L+D- (light group), and L+D+ (photodynamic therapy group). Two different concentrations of curcumin were tested (0.75 and 1.5 g/L) associated with a 5.7 J/cm(2) light emission diode. Results: Significant decreases (p < 0.05) in the viability of S. mutans were only observed when the bacterial suspensions were exposed to both curcumin and light. Then, reductions in viability of up to 99.99% were observed when using 1.5 g/L of the photosensitizer. The susceptibility of L. acidophilus was considerably lower (21% and 37.6%) for both curcumin concentrations. Conclusions: Photodynamic therapy was found to be effective in reducing S. mutans and L. acidophilus on planktonic cultures. No significant reduction was found for L-D+, proving the absence of dark toxicity of the drug.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Aspergillus phoenicis biofilms on polyethylene as inert support were used to produce fructooligosaccharides (FOS) in media containing 25% (m/V) of sucrose as a carbon source. The maximum production of total FOS (122 mg/mL), with 68% of 1-kestose and 32% of nystose, was obtained in Khanna medium maintained at 30 degrees C for 48 h under orbital agitation (100 rpm). At high concentrations of sucrose (30%, m/V), the recovery of FOS was higher than that observed at a low concentration (5%, m/V). High levels of FOS (242 mg/mL) were also recovered when using the biofilm in sodium acetate buffer with high sucrose concentration (50%, m/V) for 10 h. When the dried biofilm was reused in a fresh culture medium, there was a recovery of approx. 13.7% of total FOS after 72 h of cultivation at 30 C, and 10% corresponded to 1-kestose. The biofilm morphology, analyzed by scanning electron microscope, revealed a noncompact mycelium structure, with unfilled spaces and channels present among the hyphae. The results obtained in this study show that A. phoenicis biofilms may find application for FOS production in a single-step fermentation process, which is cost-effective in terms of reusability, downstream processing and efficiency.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this study, catalysts containing 5 wt.% Ni deposited on a support composed of a CeO2-ZrO2 solid solution deposited on alumina were tested in the steam reforming of methane. The supports, with various ratios of Ce to Zr, were prepared by co-precipitation of the oxide precursors, followed by calcination in synthetic air. The catalysts were then prepared by Ni impregnation of the supports. The prepared solids were characterized by temperature-programmed reduction with H-2 (TPR-H-2), in situ X-ray diffraction (XRD) and X-ray absorption near-edge structure (XANES) spectroscopy. The XRD analysis confirmed the formation of a solid solution between ZrO2 and CeO2. In the catalytic tests, it was found that catalysts with higher Ce content did not exhibit deactivation during 6 h of reaction. The catalyst with highest Ce content, Ni(0.8Ce0.2Zr)AI, provided the best result, with the highest rate of conversion of methane and the lowest carbon deposition, which may be partly due to the smaller Ni-0 crystallites in this sample and also the segregated CeO2 particles may have favored H2O adsorption which could lead to higher C gasification. (C) 2012 Elsevier B.V. All rights reserved.