15 resultados para strength testing
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
We evaluated the effects of air-drying distance and bond surface area on the shear bond strength of a 2-step etch-and-rinse adhesive. A total of 120 bovine anterior teeth were equally divided into 6 main groups based on bonding surface area. The main groups were divided into sub-groups (n = 5) according to air-drying distance. The shear strength was determined using a universal testing machine at a crosshead speed of 0.5 mm/min. The averaged results were subjected to two-way ANOVA and Tukey's test (alpha = 0.05). Two-way ANOVA testing identified no significant cross-product interactions (p > 0.05), but the main factors of area (p < 0.0001) and air-drying distance (p < 0.00001) significantly affected the mean bond strength. Shorter air-drying distances improved bond strength, and increased surface area decreased the bond strength.
Resumo:
Background. The aim of this study is to critically evaluate the bond strength (BS) of Glass-Ionomer Cements (GIC) to dentine with microtensile (mu TBS) and microshear (mu SBS) BS tests by assessing their rankings and failure patterns. Methods. Samples were made on flat dentine surfaces and submitted to mTBS and mSBS. The materials used were: high viscosity GIC (Ketac (TM) Molar Aplicap-KM), resin-modified GIC (Fuji II-FII), nano-filled resin-modified GIC (Ketac (TM) N100-N100) and an etch-and-rinse adhesive system with a composite resin (Adper (TM) Single Bond 2 and Z100 (TM)-Z100). All tests were performed with a Universal Testing Machine (24 h water storage, crosshead speed of 1 mm/min). Debonded surfaces were examined with a stereomicroscope (x40) to identify the failure mode. The data was analyzed with two-way ANOVA (p < 0.05) and LSD test. Results. Means were statistically different regarding the tests and materials, indicating that values for BS obtained for each material depend on the test performed. Failure analysis revealed that failures produced by mTBS were mainly cohesive for KM and FII. mu SBS failures were mainly adhesive or mixed for all materials. For the mTBS, the rank was Z100 > FII > KM = N100, whereas for the mSBS it was Z100 = FII = KM > N100. Conclusion: It may be concluded that distinct micro-mechanical tests present different failure patterns and rankings depending on the material to be considered.
Resumo:
Shear bond strength between Ni-Cr alloy bonded to a ceramic substrate Introduction: The aim of this study was to evaluate the shear bond strength between a Ni-Cr alloy and a ceramic system submitted or not to thermocycling. Materials and methods: Forty-eight cylinder blocks of Ni-Cr with 3.0 mm diameter by 4.0 mm hight and 48 disc-shaped specimens (7.0 mm in diameter by 2.0 mm thick) composed of ceramic were prepared. The Ni-Cr cylinder blocks were randomised in two groups of 24 specimens each. One group was submitted to air-particle abrasion (sandblasting) with 50 mu m Al2O3 (0.4-0.7 MPa) during 20 s, and the other group was submitted to mechanical retentions with carbide burrs. Each group was subdivided into other two groups (n = 12), submitted or not to thermocycling (500 cycles, 5-55 degrees C). The cylinder blocks were bonded to the disc-shaped ceramic specimens under 10 N of load. The shear bond strengths (MPa) were measured using a universal testing machine at a cross head speed of 0.5 mm/min and 200 kgf of load. The data were submitted to statistical analysis (ANOVA and Tukey's test). Results: The air-particle abrasion group exhibited significantly higher shear bond strength when compared to drilled group (p < 0.05). Conclusions: Thermocycling decreased significantly the bond strengths for all groups tested.
Resumo:
Objective: The flexural strength and the elastic modulus of acrylic resins, Dencor, Duralay and Trim Plus II, were evaluated with and without the addition of silanised glass fibre. Materials and methods: To evaluate the flexural strength and elastic modulus, 60 test specimens were fabricated with the addition of 10% ground silanised glass fibres for the experimental group, and 60 without the incorporation of fibres, for the control group, with 20 test specimens being made of each commercial brand of resin (Dencor, Duralay and Trim Plus II) for the control group and experimental group. After the test specimens had been completed, the flexural strength and elastic modulus tests were performed in a universal testing device, using the three-point bending test. For the specimens without fibres the One-Way Analysis of Variance and the complementary Tukey test were used, and for those with fibres it was not normal, so that the non-parametric Mann-Whitney test was applied. Results: For the flexural strength test, there was no statistical difference (p > 0.05) between each commercial brand of resin without fibres [Duralay 84.32(+/- 8.54), Trim plus 85.39(+/- 6.74), Dencor 96.70(+/- 6.52)] and with fibres (Duralay 87.18, Trim plus 88.33, Dencor 98.10). However, for the elastic modulus, there was statistical difference (p > 0.01) between each commercial brand of resin without fibres [Duralay 2380.64 (+/- 168.60), Trim plus 2740.37(+/- 311.74), Dencor 2595.42(+/- 261.22)] and with fibres (Duralay 3750.42, Trim plus 3188.80, Dencor 3400.75). Conclusion: The result showed that the incorporation of fibre did not interfere in the flexural strength values, but it increased the values for the elastic modulus.
Resumo:
Validation of parentage and horse breed registries through DNA typing relies on estimates of random match probabilities with DNA profiles generated from multiple polymorphic loci. Of the twenty-seven microsatellite loci recommended by the International Society for Animal Genetics for parentage testing in Thoroughbred horses, eleven are located on five chromosomes. An important aspect in determining combined exclusion probabilities is the ascertainment of the genetic linkage status of syntenic markers, which may affect reliable use of the product rule in estimating random match probabilities. In principle, linked markers can be in gametic phase disequilibrium (GD). We aimed at determining the extent, by frequency and strength, of GD between the HTG4 and HMS3 multiallelic loci, syntenic on chromosome 9. We typed the qualified offspring (n (1) = 27; n (2) = 14) of two Quarter Bred stallions (registered by the Brazilian Association of Quarter Horse Breeders) and 121 unrelated horses from the same breed. In the 41 informative meioses analyzed, the frequency of recombination between the HTG4 and HMS3 loci was 0.27. Consistent with genetic map distances, this recombination rate does not fit to the theoretical distribution for independently segregated markers. We estimated sign-based D' coefficients as a measure of GD, and showed that the HTG4 and HMS3 loci are in significant, yet partial and weak, disequilibrium, with two allele pairs involved (HTG4*M/HMS3*P, D'(+) = 0.6274; and HTG4*K/HMS3*P, D'(-) = -0.6096). These results warn against the inadequate inclusion of genetically linked markers in the calculation of combined power of discrimination for Thoroughbred parentage validation.
Resumo:
Objective: Obesity is a major public health problem leading to, among other things, reduced functional capacity. Moreover, obesity-related declines in functional capacity may be compounded by the detrimental consequences of menopause. The aim of this study was to understand the potential effects of excess body mass on measures of functional capacity in postmenopausal women. Methods: Forty-five postmenopausal women aged 50 to 60 years were divided into two groups according to body mass index (BMI): obese (BMI, >= 30 kg/m(2); n = 19) and nonobese (BMI, 18.5-29.9 kg/m(2); n = 26). To determine clinical characteristics, body composition, bone mineral density, and maximal exercise testing was performed, and a 3-day dietary record was estimated. To assess quadriceps function, isokinetic exercise testing at 60 degrees per second (quadriceps strength) and at 300 degrees per second (quadriceps fatigue) was performed. Results: The absolute value of the peak torque was not significantly different between the groups; however, when the data were normalized by body mass and lean mass, significantly lower values were observed for obese women compared with those in the nonobese group (128% +/- 25% vs 155% +/- 24% and 224% +/- 38% vs 257% +/- 47%, P < 0.05). The fatigue index did not show any significant difference for either group; however, when the data were normalized by the body mass and lean mass, significantly lower values were observed for obese women (69% +/- 16% vs 93% +/- 18% and 120% +/- 25% vs. 135% +/- 23%, P < 0.01). Conclusions: Our results show that despite reduced muscle force, the combination of obesity and postmenopause may be associated with greater resistance to muscle fatigue.
Resumo:
The objective of this study was to evaluate the influence of Er:YAG laser (lambda = 2.94 mu m) on microtensile bond strength (mu TBS) and superficial morphology of bovine dentin bleached with 16% carbamide peroxide. Forty bovine teeth blocks (7 x 3 x 3 mm(3)) were randomly assigned to four groups: G1- bleaching and Er:YAG irradiation with energy density of 25.56 J/cm(2) (focused mode); G2 - bleaching; G3 - no-bleaching and Er:YAG irradiation (25.56 J/cm(2)); G4 - control, non-treated. G1 and G2 were bleached with 16% carbamide peroxide for 6 h during 21 days. Afterwards, all blocks were abraded with 320 to 600-grit abrasive papers to obtain flat standardized dentin surfaces. G1 and G3 were Er:YAG irradiated. Blocks were immediately restored with 4-mm-high composite resin (Adper Single Bond 2, Z-250-3 M/ESPE). After 24 h, the restored blocks (n = 9) were serially sectioned and trimmed to an hour-glass shape of approximately 1 mm(2) at the bonded interface area, and tested in tension in a universal testing machine (1 mm/ min). Failure mode was determined at a magnification of 100x using a stereomicroscope. One block of each group was selected for scanning electron microscope (SEM) analysis. mu TBS data was analyzed by two-way ANOVA and Tukey test (alpha = 0.05). Mean bond strengths (SD) in MPa were: G1- 32.7 (5.9)(A); G2- 31.1 (6.3)(A); G3- 25.2 (8.3)(B); G4- 36.7 (9.9).(A) Groups with different uppercase letters were significantly different from each other (p < .05). Enamel bleaching procedure did not affect mu TBS values for dentin adhesion. Er:YAG laser irradiation with 25.56 J/cm(2) prior to adhesive procedure of bleached teeth did not affect mu TBS at dentin and promoted a dentin surface with no smear layer and opened dentin tubules observed under SEM. On the other hand, Er:YAG laser irradiation prior to adhesive procedure of non-bleached surface impaired mu TBS compared to the control group.
Resumo:
Tribochemical silica-coating is the recommended conditioning method for improving glass-infiltrated alumina composite adhesion to resin cement. High-intensity lasers have been considered as an alternative for this purpose. This study evaluated the morphological effects of Er,Cr:YSGG laser irradiation on aluminous ceramic, and verified the microtensile bond strength of composite resin to ceramic following silica coating or laser irradiation. In-Ceram Alumina ceramic blocks were polished, submitted to airborne particle abrasion (110 mu m Al(2)O(3)), and conditioned with: (CG) tribochemical silica coating (110 mu m SiO(2)) + silanization (control group); (L1-L10) Er,Cr:YSGG laser (2.78 mu m, 20 Hz, 0.5 to 5.0 W) + silanization. Composite resin blocks were cemented to the ceramic blocks with resin cement. These sets were stored in 37A degrees C distilled water (24 h), embedded in acrylic resin, and sectioned to produce bar specimens that were submitted to microtensile testing. Bond strength values (MPa) were statistically analyzed (alpha a parts per thousand currency sign0.05), and failure modes were determined. Additional ceramic blocks were conditioned for qualitative analysis of the topography under SEM. There were no significant differences among silicatization and laser treatments (p > 0.05). Microtensile bond strength ranged from 19.2 to 27.9 MPa, and coefficients of variation ranged from 30 to 55%. Mixed failure of adhesive interface was predominant in all groups (75-96%). No chromatic alteration, cracks or melting were observed after laser irradiation with all parameters tested. Surface conditioning of glass-infiltrated alumina composite with Er,Cr:YSGG laser should be considered an innovative alternative for promoting adhesion of ceramics to resin cement, since it resulted in similar bond strength values compared to the tribochemical treatment.
Resumo:
The need to develop new dental luting agents in order to improve the success of treatments has greatly motivated research. Objective: The aim of this study was to evaluate the diametral tensile strength (DTS) and film thickness (FT) of an experimental dental luting agent derived from castor oil (COP) with or without addition of different quantities of filler (calcium carbonate - CaCO3). Material and Methods: Eighty specimens were manufactured (DTS N=40; FT N=40) and divided into 4 groups: Pure COP; COP 10%; COP 50% and zinc phosphate (control). The cements were mixed according to the manufacturers' recommendations and submitted to the tests. The DTS test was performed in the MTS 810 testing machine (10 KN, 0.5 mm/min). For FT test, the cements were sandwiched between two glass plates (2 cm(2)) and a load of 15 kg was applied vertically on the top of the specimen for 10 min. The data were analyzed by means of one-way ANOVA and Tukey's test (alpha=0.05). Results: The values of DTS (MPa) were: Pure COP- 10.94 +/- 1.30; COP 10%- 30.06 +/- 0.64; COP 50%- 29.87 +/- 0.27; zinc phosphate- 4.88 +/- 0.96. The values of FT (pm) were: Pure COP- 31.09 +/- 3.16; COP 10%- 17.05 +/- 4.83; COP 50%- 13.03 +/- 4.83; Zinc Phosphate- 20.00 +/- 0.12. One-way ANOVA showed statistically significant differences among the groups (DTS - p=1.01E-40; FT - p=2.4E-10). Conclusion: The experimental dental luting agent with 50% of filler showed the best diametral tensile strength and film thickness.
Resumo:
The aim of the present study was to evaluate the efficacy of QMiX, SmearClear, and 17% EDTA for the debris and smear layer removal from the root canal and its effects on the push-out bond strength of an epoxy-based sealer by scanning electron microscopy (SEM). Forty extracted human canines (n = 10) were assigned to the following final rinse protocols: G1-distilled water (control), G2–17% EDTA, G3-SmearClear, and G4-QMiX. The specimens were submitted to a SEM analysis to evaluate the presence of debris and smear layer, respectively, in the apical or cervical segments. In sequence, forty extracted human maxillary canines with the root canals instrumented were divided into four groups (n = 10) similar to the SEM analysis study. After the filling with AH Plus, the roots were transversally sectioned to obtain dentinal slices. The specimens were submitted to a push-out bond strength test using an electromechanical testing machine. The statistical analysis for the SEM and push-out bond strength studies were performed using the Kruskal–Wallis and Dunn tests (α = 5%). There was no difference among the G2, G3, and G4 efficacy in removing the debris and smear layer (P > 0.05). The efficacy of these groups was superior to the control group. The push-out bond strength values of G2, G3, and G4 were superior to the control group. The ability to remove the debris and smear layer by SmearClear and QMiX was as effective as the 17% EDTA. The final rinse with these solutions promoted similar push-out bond strength values.
Resumo:
Objectives: The purpose of this study was to evaluate the influence of thermal and mechanical cycling and veneering technique on the shear bond strength of Y-TZP (yttrium oxide partially stabilized tetragonal zirconia polycrystal) core–veneer interfaces. Materials and methods: Cylindrical Y-TZP specimens were veneered either by layering (n = 20) or by pressing technique (n = 20). A metal ceramic group (CoCr) was used as control (n = 20). Ten specimens for each group were thermal and mechanical cycled and then all samples were subjected to shear bond strength in a universal testing machine with a 0.5 mm/min crosshead speed. Mean shear bond strength (MPa) was analysed with a 2-way analysis of variance and Tukey’s test ( p < 0.05). Failure mode was determined using stereomicroscopy and scanning electron microscopy (SEM). Results: Thermal and mechanical cycling had no influence on the shear bond strength for all groups. The CoCr group presented the highest bond strength value ( p < 0.05) (34.72 7.05 MPa). There was no significant difference between Y-TZP veneered by layering (22.46 2.08 MPa) or pressing (23.58 2.1 MPa) technique. Failure modes were predominantly adhesive for CoCr group, and cohesive within veneer for Y-TZP groups. Conclusions: Thermal and mechanical cycling, as well as the veneering technique does not affect Y-TZP core–veneer bond strength. Clinical significance: Different methods of veneering Y-TZP restorations would not influence the clinical performance of the core/veneer interfaces.
Resumo:
The aim of this study was to evaluate the influence of microstructure and composition of basic alloys on their microshear bond strength (µSBS) to resin luting cement. The alloys used were: Supreme Cast-V (SC), Tilite Star (TS), Wiron 99 (W9), VeraBond II (VBII), VeraBond (VB), Remanium (RM) and IPS d.SIGN 30 (IPS). Five wax patterns (13mm in diameter and 4mm height) were invested, and cast in a centrifugal casting machine for each basic alloy. The specimens were embedded in resin, polished with a SiC paper and sandblasted. After cleaning the metal surfaces, six tygon tubes (0.5 mm height and 0.75 mm in diameter) were placed on each alloy surface, the resin cement (Panavia F) was inserted, and the excess was removed before light-curing. After storage (24 h/37°C), the specimens were subjected to µSBS testing (0.5 mm/min). The data were subjected to a one-way repeated measures analysis of variance and Turkey's test (α=0.05). After polishing, their microstructures were revealed with specific conditioners. The highest µSBS (mean/standard deviation in MPa) were observed in the alloys with dendritic structure, eutectic formation or precipitation: VB (30.6/1.7), TS (29.8/0.9), SC (30.6/1.7), with the exception of IPS (31.1/0.9) which showed high µSBS but no eutectic formation. The W9 (28.1/1.5), VBII (25.9/2.0) and RM (25.9/0.9) showed the lowest µSBS and no eutectic formation. It seems that alloys with eutectic formation provide the highest µSBS values when bonded to a light-cured resin luting cement.
Resumo:
OBJECTIVE: The purpose of this study was to compare aerobic function [anaerobic threshold (%_VVO2-AT), respiratory compensation point (%_VVO2-RCP) and peak oxygen uptake (_VVO2peak)] between physically active patients with HIV/AIDS and matched controls and to examine associations between disease status, poor muscle strength, depression (as estimated by the profile of mood states questionnaire) and the aerobic performance of patients. METHODS: Progressive treadmill test data for %_VVO2-AT (V-slope method), RCP and (_VVO2peak) were compared between 39 male patients with HIV/AIDS (age 40.6¡1.4 years) and 28 male controls (age 44.4¡2.1 years) drawn from the same community and matched for habitual physical activity. Within-patient data were also examined in relation to CD4+ counts (nadir and current data) and peak isokinetic knee torque. RESULTS: AT, RCP and (_VVO2peak) values were generally similar for patients and controls.Within the patient sample, binary classification suggested that AT, RCP and (_VVO2peak) values were not associated with either the nadir or current CD4+ count, but treadmill test variables were positively associated with peak isokinetic knee torque. CONCLUSION: The aerobic performance of physically active patients with HIV/AIDS is generally well conserved. Nevertheless, poor muscle strength is observed in some HIV/AIDS patients, which is associated with lower anaerobic power and (_VVO2peak), suggesting the possibility of enhancing the aerobic performance of patients with weak muscles through appropriate muscle-strengthening activities.
Resumo:
This work presents an investigation of the ductile tearing properties for a girth weld made of an API 5L X80 pipeline steel using experimentally measured crack growth resistance curves. Use of these materials is motivated by the increasing demand in the number of applications for manufacturing high strength pipes for the oil and gas industry including marine applications and steel catenary risers. Testing of the pipeline girth welds employed side-grooved, clamped SE(T) specimens and shallow crack bend SE(B) specimens with a weld centerline notch to determine the crack growth resistance curves based upon the unloading compliance (UC) method using the single specimen technique. Recently developed compliance functions and η-factors applicable for SE(T) and SE(B) fracture specimens with homogeneous material and overmatched welds are introduced to determine crack growth resistance data from laboratory measurements of load-displacement records.
Resumo:
The aim of this study was to evaluate the compressive strength of microhybrid (FiltekTM Z250) and nanofilled (FiltekTM Supreme XT) composite resins photo-activated with two different light guide tips, fiber optic and polymer, coupled with one LED. The power density was 653 mW cm-2 when using the fiber optic light tip and 596 mW cm-2 with the polymer. After storage in distilled water at 37± 2 °C for seven days, the samples were subjected to mechanical testing of compressive strength in an EMIC universal mechanical testing machine with a load cell of 5 kN and speed of 0.5 mm min-1. The statistical analysis was performed using ANOVA with a confidence interval of 95% and Tamhane’s test. The results showed that the mean values of compressive strength were not influenced by the different light tips (p > 0.05). However, a statistical difference was observed (p < 0.001) between the microhybrid composite resin photo-activated with the fiber optic light tip and the nanofilled composite resin. Based on these results, it can be concluded that microhybrid composite resin photo-activated with the fiber optic light tip showed better results than nanofilled, regardless of the tip used, and the type of the light tip did not influence the compressive strength of either composite. Thus, the presented results suggest that both the fiber optic and polymer light guide tips provide adequate compressive strength to be used to make restorations. However, the fiber optic light tip associated with microhybrid composite resin may be an interesting option for restorations mainly in posterior teeth.