3 resultados para stochastic control
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
In this paper, we consider the stochastic optimal control problem of discrete-time linear systems subject to Markov jumps and multiplicative noises under two criteria. The first one is an unconstrained mean-variance trade-off performance criterion along the time, and the second one is a minimum variance criterion along the time with constraints on the expected output. We present explicit conditions for the existence of an optimal control strategy for the problems, generalizing previous results in the literature. We conclude the paper by presenting a numerical example of a multi-period portfolio selection problem with regime switching in which it is desired to minimize the sum of the variances of the portfolio along the time under the restriction of keeping the expected value of the portfolio greater than some minimum values specified by the investor. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
In this work, we study the performance evaluation of resource-aware business process models. We define a new framework that allows the generation of analytical models for performance evaluation from business process models annotated with resource management information. This framework is composed of a new notation that allows the specification of resource management constraints and a method to convert a business process specification and its resource constraints into Stochastic Automata Networks (SANs). We show that the analysis of the generated SAN model provides several performance indices, such as average throughput of the system, average waiting time, average queues size, and utilization rate of resources. Using the BP2SAN tool - our implementation of the proposed framework - and a SAN solver (such as the PEPS tool) we show through a simple use-case how a business specialist with no skills in stochastic modeling can easily obtain performance indices that, in turn, can help to identify bottlenecks on the model, to perform workload characterization, to define the provisioning of resources, and to study other performance related aspects of the business process.
A Robust Structural PGN Model for Control of Cell-Cycle Progression Stabilized by Negative Feedbacks
Resumo:
The cell division cycle comprises a sequence of phenomena controlled by a stable and robust genetic network. We applied a probabilistic genetic network (PGN) to construct a hypothetical model with a dynamical behavior displaying the degree of robustness typical of the biological cell cycle. The structure of our PGN model was inspired in well-established biological facts such as the existence of integrator subsystems, negative and positive feedback loops, and redundant signaling pathways. Our model represents genes interactions as stochastic processes and presents strong robustness in the presence of moderate noise and parameters fluctuations. A recently published deterministic yeast cell-cycle model does not perform as well as our PGN model, even upon moderate noise conditions. In addition, self stimulatory mechanisms can give our PGN model the possibility of having a pacemaker activity similar to the observed in the oscillatory embryonic cell cycle.