6 resultados para spray concentration reduction
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
Spray coating was used to produce thallium bromide samples on glass substrates. The influence of several fabrication parameters on the final structural properties of the samples was investigated. Substrate position, substrate temperature, solution concentration, carrying gas, and solution flow were varied systematically, the physical deposition mechanism involved in each case being discussed. Total deposition time of about 3.5 h can lead to 62-mu m-thick films, comprising completely packed micrometer-sized crystalline grains. X-ray diffraction and scanning electron microscopy were used to characterize the samples. On the basis of the experimental data, the optimum fabrication conditions were identified. The technique offers an alternative method for fast, cheap fabrication of large-area devices for the detection of high-energy radiation, i.e., X-rays and gamma-rays, in medical imaging.
Resumo:
The effects of drying air inlet temperature (IT) and concentration of Aerosil 200 (C-A) on several properties of spray-dried Apeiba tibourbou extracts were investigated following a 3(2) full factorial design. Powder recovery varied from 9.83 to 46.95% and dried products showed moisture contents below 7%. Although the spray-dried products lost some of their polyphenols, they still present excellent antioxidant activity, opening perspectives for its use to medicinal purpose. C-A exerted a key role on the properties of spray-dried extracts, while IT did not present a significative influence. Aerosil (R) 200 proved to be an interesting alternative as an excipient for the drying of the herbal extract, even at intermediate concentrations such as 15%. The best combination of conditions to use for obtaining dry A. tibourbou extracts with adequate physicochemical and functional properties involves an IT of 100 degrees C and a C-A of 15%.
Resumo:
Background: The effect of intranasal corticosteroids on the nasal epithelium mucosa is an important parameter of treatment safety. This study was designed to examine whether treatment with topical corticosteroids in patients with allergic rhinitis causes atrophic nasal mucosal changes, when compared with systemic corticosteroids, in rats. Methods: Male Wistar rats were treated daily during 7 weeks with topical administration with 10 microliters of normal saline (control group), 10 microliters of mometasone furoate group, 10 microliters of triamcinolone acetonide (T group), and 8 mg/kg of daily subcutaneous injections of methylprednisolone sodium succinate (MP group). Body weight was evaluated weekly. At the end of the treatment, rats were killed by decapitation to collect blood for determination of corticosterone levels and nasal cavities were prepared for histological descriptive analyses. Results: Treatment with T and MP decreased body weight. Plasma corticosterone concentration was significantly reduced by MP treatment and presented a clear tendency to decrease after T treatment. Histological changes observed in group T included ripples, cell vacuolization, increase in the number of nuclei, and decrease in the number of cilia in the epithelial cells. Conclusion: Growth and corticosterone concentration were impaired by T and MP at the same proportion, suggesting a role of this hormone in body gain. With the exception of T, intranasal or systemic treatment with the corticosteroids evaluated in this study did not affect nasal mucosa. (Am J Rhinol Allergy 26, e46-e49, 2012; doi: 10.2500/ajra.2012.26.3702)
Resumo:
Carbon supported Pt-Sn catalysts were prepared by reduction of Pt and Sn precursors with formic acid and characterized in terms of structure, morphology and surface properties. The electrocatalytic activity for ethanol oxidation was studied in a direct ethanol fuel cell (DEFC) at 70 degrees C and 90 degrees C. Electrochemical and physico-chemical data indicated that a proper balance of Pt and Sn species in the near surface region was necessary to maximize the reaction rate. The best atomic surface composition, in terms of electrochemical performance, was Pt:Sn 65:35 corresponding to a bulk composition 75:25 namely Pt3Sn1/C. The reaction products of ethanol electro-oxidation in single cell and their distribution as a function of the nature of catalyst were determined. Essentially, acetaldehyde and acetic acid were detected as the main reaction products; whereas, a lower content of CO2 was formed. The selectivity toward acetic acid vs. acetaldehyde increased with the increase of the Sn content and decreased by decreasing the concentration of the reducing agent used in the catalyst preparation. According to the recent literature, these results have been interpreted on the basis of ethanol adsorption characteristics and ligand effects occurring for Sn-rich electrocatalysts. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
Microparticles of ketoprofen entrapped in blends of acrylic resins (Eudragit RL 30D and RS 30D) were successfully produced by spray drying. The effects of the proportion ketoprofen : polymer (1: 1 and 1: 3) and of spray-drying parameters (drying gas inlet temperatures of 80 and 100 degrees C; microencapsulating composition feed flow rates of 4 and 6 g/min) on the microparticles properties (drug content, encapsulation efficiency, mean particle size, moisture content, and dissolution behavior) were evaluated. Differential scanning calorimetry (DSC) thermograms and X-ray diffractograms of the spray-dried product, the free drug, and the physical mixture between the free drug and spray-dried composition (blank) were carried out. Microparticles obtained at inlet temperature of 80 degrees C, feed flow rate of 4 g/min, and ketoprofen : acrylic resin ratio of 1: 3 presented an encapsulation efficiency of 88.1%, moisture content of 5.8%, production yield around 50%, and a higher reduction in dissolution rate of the entrapped ketoprofen. Sigmoidal shape dissolution profiles were presented by the spray-dried microparticles. The dissolution profiles were relatively well described by the Weibull model, a showing high coefficient of determination, R-2, and a mean absolute error between experimental and estimated values of between 4.6 and 10.1%.
Resumo:
Objective: Chronic rhinitis and adenoid hypertrophy are the main causes of nasal obstruction in children and proper treatment of these factors seem essential for controlling nasal obstructive symptoms. This study aims to evaluate the effects of topical mometasone treatment on symptoms and size of adenoid tissue in children with complaints of nasal obstruction and to compare this approach to continuous nasal saline douching plus environmental control alone. Methods: Fifty-one children with nasal obstructive complaints were submitted to a semi-structured clinical questionnaire on nasal symptoms, prick test and nasoendoscopy. Nasoendoscopic images were digitalized, and both adenoid and nasopharyngeal areas were measured in pixels. The relation adenoid/nasopharyngeal area was calculated. Patients were subsequently re-evaluated in two different periods: following 40 days of treatment with nasal douching and environmental prophylaxis alone; and after an subsequent 40 day-period, when topical mometasone furoate (total dose: 100 mu g/day) was superposed. Results: Nasal symptoms and snoring significantly improved after nasal douching, and an additional gain was observed when mometasone furoate was included to treatment. Saline douching did not influence the adenoid area, whereas a significant reduction on adenoid tonsil was observed after 40 days of mometasone treatment (P < 0.0001). Conclusion: Nasal saline douching significantly improved nasal symptoms without interfering in adenoid dimension. In contrast, mometasone furoate significantly reduced adenoid tissue, and led to a supplementary improvement of nasal symptoms. (C) 2012 Elsevier Ireland Ltd. All rights reserved.