27 resultados para sport physiology

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effect of short-term creatine (Cr) supplementation upon content of skeletal muscle-derived-reactive oxygen species (ROS) was investigated. Wistar rats were supplemented with Cr (5 g/kg BW) or vehicle, by gavage, for 6 days. Soleus and extensor digitorum longus (EDL) muscles were removed and incubated for evaluation of ROS content using Amplex-UltraRed reagent. The analysis of expression and activity of antioxidant enzymes (superoxide dismutase 1 and 2, catalase and glutathione peroxidase) were performed. Direct scavenger action of Cr on superoxide radical and hydrogen peroxide was also investigated. Short-term Cr supplementation attenuated ROS content in both soleus and EDL muscles (by 41 and 33.7%, respectively). Cr supplementation did not change expression and activity of antioxidant enzymes. Basal TBARS content was not altered by Cr supplementation. In cell-free experiments, Cr showed a scavenger effect on superoxide radical in concentrations of 20 and 40 mM, but not on hydrogen peroxide. These results indicate that Cr supplementation decreases ROS content in skeletal muscle possibly due to a direct action of Cr molecule on superoxide radical.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It is well established that atherogenic dyslipidemia, characterized by high levels of triglycerides (TG), total cholesterol (TC), and low-density lipoprotein (LDL) cholesterol and low levels of high-density lipoprotein (HDL) cholesterol, constitutes important risk factors for cardiovascular disease. Regular exercise has been associated with a reduced risk for metabolic diseases. However, studies supporting the concept that resistance exercise is a modifier of blood lipid parameters are often contradictory. The aim of this study was to investigate the effects of high-intensity resistance exercise on the serum levels of TG, TC, HDL and non-HDL cholesterol, glucose, and the liver function enzymes alanine aminotransferase (ALT, EC 2.6.1.2) and aspartate aminotransferase (AST, EC 2.6.1.1) in golden Syrian hamsters (Mesocricetus auratus (Waterhouse, 1839)) fed a hypercholesterolemic diet. Sedentary groups (S) and exercise groups (E) were fed a standard diet (SS and ES) or a cholesterol-enriched diet (standard plus 1% cholesterol, SC and EC). Resistance exercise was performed by jumps in the water, carrying a load strapped to the chest, representing 10 maximum repetitions (10 RM, 30 s rest, five days per week for five weeks). Mean blood sample comparisons were made by ANOVA + Tukey or ANOVA + Kruskal-Wallis tests (p < 0.05) to compare parametric and nonparametric samples, respectively. There were no differences in blood lipids between the standard diet groups (SS and ES) (p > 0.05). However, the EC group increased the glucose, non-HDL, and TC levels in comparison with the ES group. Moreover, the EC group increased the TG levels versus the SC group (p < 0.05). In addition, the ALT levels were increased only by diet treatment. These findings indicated that high-intensity resistance exercise contributed to dyslipidemia in hamsters fed a hypercholesterolemic diet, whereas liver function enzymes did not differ in regards to the exercise protocol.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Beta-hydroxy-beta-methylbutyrate (HMB) is a metabolite derived from leucine. The anti-catabolic effect of HMB is well documented but its effect upon skeletal muscle strength and fatigue is still uncertain. In the present study, male Wistar rats were supplemented with HMB (320 mg/kg per day) for 4 weeks. Placebo group received saline solution only. Muscle strength (twitch and tetanic force) and resistance to acute muscle fatigue of the gastrocnemius muscle were evaluated by direct electrical stimulation of the sciatic nerve. The content of ATP and glycogen in red and white portions of gastrocnemius muscle were also evaluated. The effect of HMB on citrate synthase (CS) activity was also investigated. Muscle tetanic force was increased by HMB supplementation. No change was observed in time to peak of contraction and relaxation time. Resistance to acute muscle fatigue during intense contractile activity was also improved after HMB supplementation. Glycogen content was increased in both white (by fivefold) and red (by fourfold) portions of gastrocnemius muscle. HMB supplementation also increased the ATP content in red (by twofold) and white (1.2-fold) portions of gastrocnemius muscle. CS activity was increased by twofold in red portion of gastrocnemius muscle. These results support the proposition that HMB supplementation have marked change in oxidative metabolism improving muscle strength generation and performance during intense contractions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The development of the percutaneous muscle biopsy technique is recognized as one of the most important scientific contributions in advancing our understanding of skeletal muscle physiology. However, a concern that this procedure may be associated with adverse events still exists. We reported the incidence of adverse outcomes associated with percutaneous muscle biopsy in healthy and diseased subjects. Medical records of 274 volunteers (496 muscle biopsies) were reviewed. This included 168 healthy subjects (330 muscle biopsies) as well as 106 chronically ill patients (166 muscle biopsies). This latter group encompassed patients with type II diabetes (n=28), osteoarthritis (n=39), inclusion body myositis (n=4), polymyositis (n=4), and chronic heart failure (n=31). The most common occurrences were pain (1.27%), erythema (1.27%), and ecchymosis (1.27%). Panic episode, bleeding, and edema were also reported (0.21%, 0.42%, and 0.84%, respectively), while infection, hematoma, inflammation, denervation, numbness, atrophy, and abnormal scarring were not verified. The percent of incidents did not differ between healthy and ill individuals. In conclusion, the incidence of complications associated with percutaneous muscle biopsy is scarce and of minor clinical relevance. Additionally, the rate of adverse events is comparable between healthy and chronically ill subjects.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The high consumption of fructose is linked to the increase in various characteristics of the metabolic syndrome. Fish oil is beneficial for the treatment of these comorbidities, such as insulin resistance, dyslipidemia, and hepatic steatosis. The objective of this study was to evaluate the consequences of the administration of fish oil concomitant to fructose ingestion during the experiment (45 days) and during the final 15 days in high-fructose-fed rats. Male Wistar rats were divided into 5 groups: control; those receiving 10% fish oil (FO); those receiving 60% fructose (Fr); those receiving 60% fructose and 10% fish oil for 45 days (FrFO); and those receiving fructose plus soybean oil for 30 days and fish oil for the final 15 days of the study (FrFO15). There was an increase in triacylglycerol, serum total cholesterol, and hepatic volume in the Fr group. The FO and FrFO groups experienced an increase in lipid peroxidation and a decrease in serum reduced glutathione. The FrFO group suffered greater hepatic injury, with increased alanine aminotransferase levels and DNA damage. Marked n-3 incorporation occurred in the groups receiving fish oil, favoring a better response to the oral glucose tolerance test. Fructose induced comorbidities of the metabolic syndrome, and the use of fish oil promoted a better glucose tolerance, although it was accompanied by more hepatocyte damage.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The purpose of this study was to investigate energy system contributions and energy costs in combat situations. The sample consisted of 10 male taekwondo athletes (age: 21 +/- 6 years old; height: 176.2 +/- 5.3 cm; body mass: 67.2 +/- 8.9 kg) who compete at the national or international level. To estimate the energy contributions, and total energy cost of the fights, athletes performed a simulated competition consisting of three 2 min rounds with a 1 min recovery between each round. The combats were filmed to quantify the actual time spent fighting in each round. The contribution of the aerobic (WAER), anaerobic alactic (W-PCR), and anaerobic lactic (Wleft perpendicularLA-right perpendicular) energy systems was estimated through the measurement of oxygen consumption during the activity, the fast component of excess post-exercise oxygen consumption, and the change in blood lactate concentration in each round, respectively. The mean ratio of high intensity actions to moments of low intensity (steps and pauses) was similar to 1:7. The W-AER, W-PCR and (Wleft perpendicularLA-right perpendicular) system contributions were estimated as 120 +/- 22 kJ (66 +/- 6%), 54 +/- 21 kJ (30 +/- 6%), 8.5 kJ (4 +/- 2%), respectively. Thus, training sessions should be directed mainly to the improvement of the anaerobic alactic system (responsible by the highintensity actions), and of the aerobic system (responsible by the recovery process between high- intensity actions).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this study was to evaluate the effect of carbohydrate supplementation on free plasma DNA and conventional markers of training and tissue damage in long-distance runners undergoing an overload training program. Twenty-four male runners were randomly assigned to two groups (CHO group and control group). The participants were submitted to an overload training program (days 1-8), followed by a high-intensity intermittent running protocol (10 x 800 m) on day 9. The runners received maltodextrin solution (CHO group) or zero energy placebo solution as the control equivalent before, during, and after this protocol. After 8 days of intensive training, baseline LDH levels remained constant in the CHO group (before: 449.1 +/- 18.2, after: 474.3 +/- 22.8 U/L) and increased in the control group (from 413.5 +/- 23.0 to 501.8 +/- 24.1 U/L, p < 0.05). On day 9, LDH concentrations were lower in the CHO group (509.2 +/- 23.1 U/L) than in the control group (643.3 +/- 32.9 U/L, p < 0.01) post-intermittent running. Carbohydrate ingestion attenuated the increase of free plasma DNA post-intermittent running (48,240.3 +/- 5,431.8 alleles/mL) when compared to the control group (73,751.8 +/- 11,546.6 alleles/mL, p < 0.01). Leukocyte counts were lower in the CHO group than in the control group post-intermittent running (9.1 +/- 0.1 vs. 12.2 +/- 0.7 cells/mu L; p < 0.01) and at 80 min of recovery (10.6 +/- 0.1 vs. 13.9 +/- 1.1 cells/mu L; p < 0.01). Cortisol levels were positively correlated with free plasma DNA, leukocytes, and LDH (all r > 0.4 and p < 0.001). The results showed that ingestion of a carbohydrate beverage resulted in less DNA damage and attenuated the acute post-exercise inflammation response, providing better recovery during intense training.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this study was to investigate the methods adopted to reduce body mass (BM) in competitive athletes from the grappling (judo, jujitsu) and striking (karate and tae kwon do) combat sports in the state of Minas Gerais, Brazil. An exploratory methodology was employed through descriptive research, using a standardized questionnaire with objective questions self-administered to 580 athletes (25.0 +/- 3.7 yr, 74.5 +/- 9.7 kg, and 16.4% +/- 5.1% body fat). Regardless of the sport, 60% of the athletes reported using a method of rapid weight loss (RWL) through increased energy expenditure. Strikers tend to begin reducing BM during adolescence. Furthermore, 50% of the sample used saunas and plastic clothing, and only 26.1% received advice from a nutritionist. The authors conclude that a high percentage of athletes uses RWL methods. In addition, a high percentage of athletes uses unapproved or prohibited methods such as diuretics, saunas, and plastic clothing. The age at which combat sport athletes reduce BM for the first time is also worrying, especially among strikers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Introduction: The ankle sprain is one of the most common injuries in athletes. Direct evaluation of the ligament laxity can be obtained through the objective measurement of extreme passive inversion and eversion movements, but there are few studies on the use of the evaluation of the passive resistive torque of the ankle to assess the capsule and ligaments resistance. Objective: The aim of this study was to compare the inversion and eversion passive torque in athletes with and without ankle sprains history. Method: 32 female basketball and volleyball athletes (16.06 +/- 0.8 years old; 67.63 +/- 8.17 kg; 177.8 +/- 6.47 cm) participated in this study. Their ankles were divided into two groups: control group (29), composed of symptom-free ankles, and ankle sprain group, composed of ankles which have suffered injury (29). The resistive torque at maximum passive ankle movement was measured by the isokinetic dynamometer and the muscular activity by electromyography system. The athletes performed 2 repetitions of inversion and eversion movement at 5, 10 and 20 degrees/s and the same protocol only at maximum inversion movement. Results: The resistive passive torque during the inversion and eversion was lower in the ankle sprain group. This group also showed lower torques at the maximum inversion movement. No differences were observed between inversion and eversion movement. Conclusions: Ankle sprain leads to lower passive torque, indicating reduction of the resistance of the lateral ankle ligaments and mechanical laxity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study examined whether there is an association between surface electromyography (EMG) of masticatory muscles, orofacial myofunction status and temporomandibular disorder (TMD) severity scores. Forty-two women with TMD (mean 30 years, SD 8) and 18 healthy women (mean 26 years, SD 6) were examined. According to the Research Diagnostic Criteria for TMD (RDC/TMD), all patients had myogenous disorders plus disk displacements with reduction. Surface EMG of masseter and temporal muscles was performed during maximum teeth clenching either on cotton rolls or in intercuspal position. Standardized EMG indices were obtained. Validated protocols were used to determine the perception severity of TMD and to assess orofacial myofunctional status. TMD patients showed more asymmetry between right and left muscle pairs, and more unbalanced contractile activities of contralateral masseter and temporal muscles (p < 0.05, t-test), worse orofacial myofunction status and higher TMD severity scores (p < 0.05, Mann-Whitney test) than healthy subjects. Spearman coefficient revealed significant correlations between EMG indices, orofacial myofunctional status and TMD severity (p < 0.05). In conclusion, these methods will provide useful information for TMD diagnosis and future therapeutic planning. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Martins JM, Longhi-Balbinot DT, Soares DM, Figueiredo MJ, Malvar D do C, de Melo MC, Rae GA, Souza GE. Involvement of PGE(2) and RANTES in Staphylococcus aureus-induced fever in rats. J Appl Physiol 113: 1456-1465, 2012. First published August 30, 2012; doi:10.1152/japplphysiol.00936.2011.-This study investigated the involvement of prostaglandins and regulated on activation, normal T cell expressed and secreted (RANTES), in fever induced by live Staphylococcus aureus (no. 25923, American Type Culture Collection) injection in rats. S. aureus was injected intraperitoneally at 10(9), 10(10), and 2 x 10(10) colony-forming units (CFU)/cavity, and body temperature (T-b) was measured by radiotelemetry. The lowest dose of S. aureus induced a modest transient increase in T-b, whereas the two higher doses promoted similar long-lasting and sustained T-b increases. Thus, the 10(10) CFU/cavity dose was chosen for the remaining experiments. The T-b increase induced by S. aureus was accompanied by significant decreases in tail skin temperature and increases in PGE(2) levels in the cerebrospinal fluid (CSF) and hypothalamus but not in the venous plasma. Celecoxib (selective cyclooxygenase-2 inhibitor, 2.5 mg/kg po) inhibited the fever and the increases in PGE(2) concentration in the CSF and hypothalamus induced by S. aureus. Dipyrone (120 mg/kg ip) reduced the fever from 2.5 to 4 h and the PGE(2) increase in the CSF but not in the hypothalamus. S. aureus increased RANTES in the peritoneal exudate but not in the CSF or hypothalamus. Met-RANTES (100 mu g/kg iv), a chemokine (C-C motif) receptor (CCR)1/CCR5 antagonist, reduced the first 6 h of fever induced by S. aureus. This study suggests that peripheral (local) RANTES and central PGE(2) production are key events in the febrile response to live S. aureus injection. As dipyrone does not reduce PGE(2) synthesis in the hypothalamus, it is plausible that S. aureus induces fever, in part, via a dipyrone-sensitive PGE(2)-independent pathway.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Athletes from many sports that are categorized by body mass tend to reduce it to fit in lower categories. Such reduction can compromise the athlete's performance and health. In order to determine the most appropriate category, the body composition is highly relevant, especially to avoid excessive reduction. Thus, this study analyzed the morphological profile of Brazilian Jiu-Jitsu elite athletes. The sample was composed of 11 athletes, aged 25.8 +/- 3.3 years, medalists in national and/or international competitions. The analysis was performed to determine the anthropometric body composition and somatotype. Body fat percentage from this population was 10.3 +/- 2.6 % fat, a high percentage of muscle mass (61.3 +/- 1.5 %), and predominant mesomorphic component (5.5 +/- 1.0) was observed. The points of highest and lowest fat accumulation were respectively abdominal (15.7 +/- 6.3 mm) and chest (6.8 +/- 1.5 mm) regions. It can be concluded that athletes from this sport showed higher body mass during the preparatory period than in competitive conditions (4.4 +/- 2.4 %); however, they showed low body fat, high muscle mass percentage and predominant mesomorphic component.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dettoni JL, Consolim-Colombo FM, Drager LF, Rubira MC, de Souza SB, Irigoyen MC, Mostarda C, Borile S, Krieger EM, Moreno H Jr, Lorenzi-Filho G. Cardiovascular effects of partial sleep deprivation in healthy volunteers. J Appl Physiol 113: 232-236, 2012. First published April 26, 2012; doi: 10.1152/japplphysiol.01604.2011.-Sleep deprivation is common in Western societies and is associated with increased cardiovascular morbidity and mortality in epidemiological studies. However, the effects of partial sleep deprivation on the cardiovascular system are poorly understood. In the present study, we evaluated 13 healthy male volunteers (age: 31 +/- 2 yr) monitoring sleep diary and wrist actigraphy during their daily routine for 12 nights. The subjects were randomized and crossover to 5 nights of control sleep (>7 h) or 5 nights of partial sleep deprivation (<5 h), interposed by 2 nights of unrestricted sleep. At the end of control and partial sleep deprivation periods, heart rate variability (HRV), blood pressure variability (BPV), serum norepinephrine, and venous endothelial function (dorsal hand vein technique) were measured at rest in a supine position. The subjects slept 8.0 +/- 0.5 and 4.5 +/- 0.3 h during control and partial sleep deprivation periods, respectively (P < 0.01). Compared with control, sleep deprivation caused significant increase in sympathetic activity as evidenced by increase in percent low-frequency (50 +/- 15 vs. 59 +/- 8) and a decrease in percent high-frequency (50 +/- 10 vs. 41 +/- 8) components of HRV, increase in low-frequency band of BPV, and increase in serum norepinephrine (119 +/- 46 vs. 162 +/- 58 ng/ml), as well as a reduction in maximum endothelial dependent venodilatation (100 +/- 22 vs. 41 +/- 20%; P < 0.05 for all comparisons). In conclusion, 5 nights of partial sleep deprivation is sufficient to cause significant increase in sympathetic activity and venous endothelial dysfunction. These results may help to explain the association between short sleep and increased cardiovascular risk in epidemiological studies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cunha TF, Moreira JB, Paixao NA, Campos JC, Monteiro AW, Bacurau AV, Bueno CR Jr., Ferreira JC, Brum PC. Aerobic exercise training upregulates skeletal muscle calpain and ubiquitin-proteasome systems in healthy mice. J Appl Physiol 112: 1839-1846, 2012. First published March 29, 2012; doi:10.1152/japplphysiol.00346.2011.-Aerobic exercise training (AET) is an important mechanical stimulus that modulates skeletal muscle protein turnover, leading to structural rearrangement. Since the ubiquitin-proteasome system (UPS) and calpain system are major proteolytic pathways involved in protein turnover, we aimed to investigate the effects of intensity-controlled AET on the skeletal muscle UPS and calpain system and their association to training-induced structural adaptations. Long-lasting effects of AET were studied in C57BL/6J mice after 2 or 8 wk of AET. Plantaris cross-sectional area (CSA) and capillarization were assessed by myosin ATPase staining. mRNA and protein expression levels of main components of the UPS and calpain system were evaluated in plantaris by real-time PCR and Western immunoblotting, respectively. No proteolytic system activation was observed after 2 wk of AET. Eight weeks of AET resulted in improved running capacity, plantaris capillarization, and CSA. Muscle RING finger-1 mRNA expression was increased in 8-wk-trained mice. Accordingly, elevated 26S proteasome activity was observed in the 8-wk-trained group, without accumulation of ubiquitinated or carbonylated proteins. In addition, calpain abundance was increased by 8 wk of AET, whereas no difference was observed in its endogenous inhibitor calpastatin. Taken together, our findings indicate that skeletal muscle enhancements, as evidenced by increased running capacity, plantaris capillarization, and CSA, occurred in spite of the upregulated UPS and calpain system, suggesting that overactivation of skeletal muscle proteolytic systems is not restricted to atrophying states. Our data provide evidence for the contribution of the UPS and calpain system to metabolic turnover of myofibrillar proteins and skeletal muscle adaptations to AET.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aerobic exercise training (ET) has been established as an important non-pharmacological treatment of hypertension, since it decreases blood pressure. Studies show that the skeletal muscle abnormalities in hypertension are directly associated with capillary rarefaction, higher percentage of fast-twitch fibers (type II) with glycolytic metabolism predominance and increased muscular fatigue. However, little is known about these parameters in hypertension induced by ET. We hypothesized that ET corrects capillary rarefaction, potentially contributing to the restoration of the proportion of muscle fiber types and metabolic proprieties. Twelve-week old Spontaneously Hypertensive Rats (SHR, n=14) and Wistar Kyoto rats (WKY, n=14) were randomly assigned into 4 groups: SHR, trained SHR (SHR-T), WKY and trained WKY (WKY-T). As expected, ten weeks of ET was effective in reducing blood pressure in SHR-T group. In addition, we analyzed the main markers of ET. Resting bradycardia, increase of exercise tolerance, peak oxygen uptake and citrate synthase enzyme activity in trained groups (WKY-T and SHR-T) showed that the aerobic condition was achieved. ET also corrected the skeletal muscle capillary rarefaction in SHR-T. In parallel, we observed reduction in percentage of type IIA and IIX fibers and simultaneous augmented percentage of type I fibers induced by ET in hypertension. These data suggest that ET prevented changes in soleus fiber type composition in SHR, since angiogenesis and oxidative enzyme activity increased are important adaptations of ET, acting in the maintenance of muscle oxidative metabolism and fiber profile.