4 resultados para specular reflectance

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose: To evaluate endothelial cell sample size and statistical error in corneal specular microscopy (CSM) examinations. Methods: One hundred twenty examinations were conducted with 4 types of corneal specular microscopes: 30 with each BioOptics, CSO, Konan, and Topcon corneal specular microscopes. All endothelial image data were analyzed by respective instrument software and also by the Cells Analyzer software with a method developed in our lab(US Patent). A reliability degree (RD) of 95% and a relative error (RE) of 0.05 were used as cut-off values to analyze images of the counted endothelial cells called samples. The sample size mean was the number of cells evaluated on the images obtained with each device. Only examinations with RE<0.05 were considered statistically correct and suitable for comparisons with future examinations. The Cells Analyzer software was used to calculate the RE and customized sample size for all examinations. Results: Bio-Optics: sample size, 97 +/- 22 cells; RE, 6.52 +/- 0.86; only 10% of the examinations had sufficient endothelial cell quantity (RE<0.05); customized sample size, 162 +/- 34 cells. CSO: sample size, 110 +/- 20 cells; RE, 5.98 +/- 0.98; only 16.6% of the examinations had sufficient endothelial cell quantity (RE<0.05); customized sample size, 157 +/- 45 cells. Konan: sample size, 80 +/- 27 cells; RE, 10.6 +/- 3.67; none of the examinations had sufficient endothelial cell quantity (RE>0.05); customized sample size, 336 +/- 131 cells. Topcon: sample size, 87 +/- 17 cells; RE, 10.1 +/- 2.52; none of the examinations had sufficient endothelial cell quantity (RE>0.05); customized sample size, 382 +/- 159 cells. Conclusions: A very high number of CSM examinations had sample errors based on Cells Analyzer software. The endothelial sample size (examinations) needs to include more cells to be reliable and reproducible. The Cells Analyzer tutorial routine will be useful for CSM examination reliability and reproducibility.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The leaf area index (LAI) is a key characteristic of forest ecosystems. Estimations of LAI from satellite images generally rely on spectral vegetation indices (SVIs) or radiative transfer model (RTM) inversions. We have developed a new and precise method suitable for practical application, consisting of building a species-specific SVI that is best-suited to both sensor and vegetation characteristics. Such an SVI requires calibration on a large number of representative vegetation conditions. We developed a two-step approach: (1) estimation of LAI on a subset of satellite data through RTM inversion; and (2) the calibration of a vegetation index on these estimated LAI. We applied this methodology to Eucalyptus plantations which have highly variable LAI in time and space. Previous results showed that an RTM inversion of Moderate Resolution Imaging Spectroradiometer (MODIS) near-infrared and red reflectance allowed good retrieval performance (R-2 = 0.80, RMSE = 0.41), but was computationally difficult. Here, the RTM results were used to calibrate a dedicated vegetation index (called "EucVI") which gave similar LAI retrieval results but in a simpler way. The R-2 of the regression between measured and EucVI-simulated LAI values on a validation dataset was 0.68, and the RMSE was 0.49. The additional use of stand age and day of year in the SVI equation slightly increased the performance of the index (R-2 = 0.77 and RMSE = 0.41). This simple index opens the way to an easily applicable retrieval of Eucalyptus LAI from MODIS data, which could be used in an operational way.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work we propose the use of experimental and theoretical reflectance anisotropy spectra (RAS) as a new tool to identify structural and dynamical aspects of the bilipid membrane and its various constituent molecules. The role of geometric details at the atomic level and macroscopic quantities, such as the membrane curvature and tilt for the different gel phases, in the theoretical RAS spectra (using Kohn-Sham density functional theory (KS-DFT)) are presented. Then the results are compared to the experimentally measured spectra taken from other techniques.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work we propose the use of experimental and theoretical reflectance anisotropy spectra (RAS) as a new tool to identify structural and dynamical aspects of the bilipid membrane and its various constituent molecules. The role of geometric details at the atomic level and macroscopic quantities, such as the membrane curvature and tilt for the different gel phases, in the theoretical RAS spectra (using Kohn-Sham density functional theory (KS-DFT)) are presented. Then the results are compared to the experimentally measured spectra taken from other techniques.