6 resultados para singular perturbations
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
In this paper we study the continuity of invariant sets for nonautonomous infinite-dimensional dynamical systems under singular perturbations. We extend the existing results on lower-semicontinuity of attractors of autonomous and nonautonomous dynamical systems. This is accomplished through a detailed analysis of the structure of the invariant sets and its behavior under perturbation. We prove that a bounded hyperbolic global solutions persists under singular perturbations and that their nonlinear unstable manifold behave continuously. To accomplish this, we need to establish results on roughness of exponential dichotomies under these singular perturbations. Our results imply that, if the limiting pullback attractor of a nonautonomous dynamical system is the closure of a countable union of unstable manifolds of global bounded hyperbolic solutions, then it behaves continuously (upper and lower) under singular perturbations.
Resumo:
In this study we address the problem of the response of a (electro)chemical oscillator towards chemical perturbations of different magnitudes. The chemical perturbation was achieved by addition of distinct amounts of trifluoromethanesulfonate (TFMSA), a rather stable and non-specifically adsorbing anion, and the system under investigation was the methanol electro-oxidation reaction under both stationary and oscillatory regimes. Increasing the anion concentration resulted in a decrease in the reaction rates of methanol oxidation and a general decrease in the parameter window where oscillations occurred. Furthermore, the addition of TFMSA was found to decrease the induction period and the total duration of oscillations. The mechanism underlying these observations was derived mathematically and revealed that inhibition in the methanol oxidation through blockage of active sites was found to further accelerate the intrinsic non-stationarity of the unperturbed system. Altogether, the presented results are among the few concerning the experimental assessment of the sensitiveness of an oscillator towards chemical perturbations. The universal nature of the complex chemical oscillator investigated here might be used for reference when studying the dynamics of other less accessible perturbed networks of (bio)chemical reactions.
Resumo:
We show that the Kronecker sum of d >= 2 copies of a random one-dimensional sparse model displays a spectral transition of the type predicted by Anderson, from absolutely continuous around the center of the band to pure point around the boundaries. Possible applications to physics and open problems are discussed briefly.
Resumo:
We review recent progress in the mathematical theory of quantum disordered systems: the Anderson transition, including some joint work with Marchetti, the (quantum and classical) Edwards-Anderson (EA) spin-glass model and return to equilibrium for a class of spin-glass models, which includes the EA model initially in a very large transverse magnetic field. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4770066]
Resumo:
Walking on irregular surfaces and in the presence of unexpected events is a challenging problem for bipedal machines. Up to date, their ability to cope with gait disturbances is far less successful than humans': Neither trajectory controlled robots, nor dynamic walking machines (Limit CycleWalkers) are able to handle them satisfactorily. On the contrary, humans reject gait perturbations naturally and efficiently relying on their sensory organs that, if needed, elicit a recovery action. A similar approach may be envisioned for bipedal robots and exoskeletons: An algorithm continuously observes the state of the walker and, if an unexpected event happens, triggers an adequate reaction. This paper presents a monitoring algorithm that provides immediate detection of any type of perturbation based solely on a phase representation of the normal walking of the robot. The proposed method was evaluated in a Limit Cycle Walker prototype that suffered push and trip perturbations at different moments of the gait cycle, providing 100% successful detections for the current experimental apparatus and adequately tuned parameters, with no false positives when the robot is walking unperturbed.
Resumo:
In this communication we report results from the application to the study of the rotation of the Moon of the creeping tide theory just proposed (Ferraz-Mello, Cel. Mech. Dyn. Astron., submitted. ArXiv astro-ph 1204.3957). The choice of the Moon for the first application of this new theory is motivated by the fact that the Moon is one of the best observed celestial bodies and the comparison of the theoretical predictions of the theory with observations i may validate the theory or point out the need of further improvements. Particularly, the tidal perturbations of the rotation of the Moon - the physical libration of the Moon - have been detected in the Lunar Laser Ranging measurements (Williams et al. JGR 106, 27933, 2001). The major difficulty in this application comes from the fact that tidal torques in a planet-satellite system are very sensitive to the distance between the two-bodies, which is strongly affected by Solar perturbations. In the case of the Moon, the main solar perturbations - the Evection and the Variation - are more important than most of the Keplerian oscillations, being smaller only than the first Keplerian harmonic (equation of the centre). Besides, two of the three components of the Moon's libration in longitude whose tidal contributions were determined by LLR are related to these perturbations. The results may allow us to determine the main parameter of a possible Moon's creeping tide. The preliminary results point to a relaxation factor (gamma) 2 to 4 times smaller than the one predicted from the often cited values of thr Moon's quality factor Q (between 30 and 40), and points to larger Q values.