Anderson-like Transition for a Class of Random Sparse Models in d >= 2 Dimensions


Autoria(s): Marchetti, Domingos Humberto Urbano; Wreszinski, Walter Felipe
Contribuinte(s)

UNIVERSIDADE DE SÃO PAULO

Data(s)

21/10/2013

21/10/2013

2012

Resumo

We show that the Kronecker sum of d >= 2 copies of a random one-dimensional sparse model displays a spectral transition of the type predicted by Anderson, from absolutely continuous around the center of the band to pure point around the boundaries. Possible applications to physics and open problems are discussed briefly.

Identificador

JOURNAL OF STATISTICAL PHYSICS, NEW YORK, v. 146, n. 5, supl. 4, Part 1-2, pp. 885-899, MAR, 2012

0022-4715

http://www.producao.usp.br/handle/BDPI/35182

10.1007/s10955-012-0439-4

http://dx.doi.org/10.1007/s10955-012-0439-4

Idioma(s)

eng

Publicador

SPRINGER

NEW YORK

Relação

JOURNAL OF STATISTICAL PHYSICS

Direitos

closedAccess

Copyright SPRINGER

Palavras-Chave #SPECTRAL TRANSITION #SPARSE POTENTIAL #KRONECKER SUM #SINGULAR CONTINUOUS-SPECTRUM #ABSOLUTELY CONTINUOUS SPECTRA #RANK-ONE PERTURBATIONS #SCHRODINGER-OPERATORS #SCATTERING-THEORY #LOCALIZATION #HAMILTONIANS #ASYMPTOTICS #POTENTIALS #PRODUCTS #POTENCIAIS #TEORIA DA DISPERSÃO #PERTURBAÇÕES RANK-ONE #PHYSICS, MATHEMATICAL
Tipo

article

original article

publishedVersion