Anderson-like Transition for a Class of Random Sparse Models in d >= 2 Dimensions
Contribuinte(s) |
UNIVERSIDADE DE SÃO PAULO |
---|---|
Data(s) |
21/10/2013
21/10/2013
2012
|
Resumo |
We show that the Kronecker sum of d >= 2 copies of a random one-dimensional sparse model displays a spectral transition of the type predicted by Anderson, from absolutely continuous around the center of the band to pure point around the boundaries. Possible applications to physics and open problems are discussed briefly. |
Identificador |
JOURNAL OF STATISTICAL PHYSICS, NEW YORK, v. 146, n. 5, supl. 4, Part 1-2, pp. 885-899, MAR, 2012 0022-4715 http://www.producao.usp.br/handle/BDPI/35182 10.1007/s10955-012-0439-4 |
Idioma(s) |
eng |
Publicador |
SPRINGER NEW YORK |
Relação |
JOURNAL OF STATISTICAL PHYSICS |
Direitos |
closedAccess Copyright SPRINGER |
Palavras-Chave | #SPECTRAL TRANSITION #SPARSE POTENTIAL #KRONECKER SUM #SINGULAR CONTINUOUS-SPECTRUM #ABSOLUTELY CONTINUOUS SPECTRA #RANK-ONE PERTURBATIONS #SCHRODINGER-OPERATORS #SCATTERING-THEORY #LOCALIZATION #HAMILTONIANS #ASYMPTOTICS #POTENTIALS #PRODUCTS #POTENCIAIS #TEORIA DA DISPERSÃO #PERTURBAÇÕES RANK-ONE #PHYSICS, MATHEMATICAL |
Tipo |
article original article publishedVersion |