5 resultados para signal detection theory

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background The evolutionary advantages of selective attention are unclear. Since the study of selective attention began, it has been suggested that the nervous system only processes the most relevant stimuli because of its limited capacity [1]. An alternative proposal is that action planning requires the inhibition of irrelevant stimuli, which forces the nervous system to limit its processing [2]. An evolutionary approach might provide additional clues to clarify the role of selective attention. Methods We developed Artificial Life simulations wherein animals were repeatedly presented two objects, "left" and "right", each of which could be "food" or "non-food." The animals' neural networks (multilayer perceptrons) had two input nodes, one for each object, and two output nodes to determine if the animal ate each of the objects. The neural networks also had a variable number of hidden nodes, which determined whether or not it had enough capacity to process both stimuli (Table 1). The evolutionary relevance of the left and the right food objects could also vary depending on how much the animal's fitness was increased when ingesting them (Table 1). We compared sensory processing in animals with or without limited capacity, which evolved in simulations in which the objects had the same or different relevances. Table 1. Nine sets of simulations were performed, varying the values of food objects and the number of hidden nodes in the neural networks. The values of left and right food were swapped during the second half of the simulations. Non-food objects were always worth -3. The evolution of neural networks was simulated by a simple genetic algorithm. Fitness was a function of the number of food and non-food objects each animal ate and the chromosomes determined the node biases and synaptic weights. During each simulation, 10 populations of 20 individuals each evolved in parallel for 20,000 generations, then the relevance of food objects was swapped and the simulation was run again for another 20,000 generations. The neural networks were evaluated by their ability to identify the two objects correctly. The detectability (d') for the left and the right objects was calculated using Signal Detection Theory [3]. Results and conclusion When both stimuli were equally relevant, networks with two hidden nodes only processed one stimulus and ignored the other. With four or eight hidden nodes, they could correctly identify both stimuli. When the stimuli had different relevances, the d' for the most relevant stimulus was higher than the d' for the least relevant stimulus, even when the networks had four or eight hidden nodes. We conclude that selection mechanisms arose in our simulations depending not only on the size of the neuron networks but also on the stimuli's relevance for action.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Background: The Beck Depression Inventory (BDI) is used worldwide for detecting depressive symptoms. This questionnaire has been revised (1996) to match the DSM-IV criteria for a major depressive episode. We assessed the reliability and the validity of the Brazilian Portuguese version of the BDI-II for non-clinical adults. Methods: The questionnaire was applied to 60 college students on two occasions. Afterwards, 182 community-dwelling adults completed the BDI-II, the Self-Report Questionnaire, and the K10 Scale. Trained psychiatrists performed face-to-face interviews with the respondents using the Structured Clinical Interview (SCID-I), the Montgomery-angstrom sberg Depression Scale, and the Hamilton Anxiety Scale. Descriptive analysis, signal detection analysis (Receiver Operating Characteristics), correlation analysis, and discriminant function analysis were performed to investigate the psychometric properties of the BDI-II. Results: The intraclass correlation coefficient of the BDI-II was 0.89, and the Cronbach's alpha coefficient of internal consistency was 0.93. Taking the SCID as the gold standard, the cut-off point of 10/11 was the best threshold for detecting depression, yielding a sensitivity of 70% and a specificity of 87%. The concurrent validity (a correlation of 0.63-0.93 with scales applied simultaneously) and the predictive ability of the severity level (over 65% correct classification) were acceptable. Conclusion: The BDI-II is reliable and valid for measuring depressive symptomatology among Portuguese-speaking Brazilian non-clinical populations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Pierre Auger Observatory is exploring the potential of the radio detection technique to study extensive air showers induced by ultra-high energy cosmic rays. The Auger Engineering Radio Array (AERA) addresses both technological and scientific aspects of the radio technique. A first phase of AERA has been operating since September 2010 with detector stations observing radio signals at frequencies between 30 and 80 MHz. In this paper we present comparative studies to identify and optimize the antenna design for the final configuration of AERA consisting of 160 individual radio detector stations. The transient nature of the air shower signal requires a detailed description of the antenna sensor. As the ultra-wideband reception of pulses is not widely discussed in antenna literature, we review the relevant antenna characteristics and enhance theoretical considerations towards the impulse response of antennas including polarization effects and multiple signal reflections. On the basis of the vector effective length we study the transient response characteristics of three candidate antennas in the time domain. Observing the variation of the continuous galactic background intensity we rank the antennas with respect to the noise level added to the galactic signal.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The ability to transmit and amplify weak signals is fundamental to signal processing of artificial devices in engineering. Using a multilayer feedforward network of coupled double-well oscillators as well as Fitzhugh-Nagumo oscillators, we here investigate the conditions under which a weak signal received by the first layer can be transmitted through the network with or without amplitude attenuation. We find that the coupling strength and the nodes' states of the first layer act as two-state switches, which determine whether the transmission is significantly enhanced or exponentially decreased. We hope this finding is useful for designing artificial signal amplifiers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this work, the reduction reaction of paraquat herbicide was used to obtain analytical signals using electrochemical techniques of differential pulse voltammetry, square wave voltammetry and multiple square wave voltammetry. Analytes were prepared with laboratory purified water and natural water samples (from Mogi-Guacu River, SP). The electrochemical techniques were applied to 1.0 mol L-1 Na2SO4 solutions, at pH 5.5, and containing different concentrations of paraquat, in the range of 1 to 10 mu mol L-1, using a gold ultramicroelectrode. 5 replicate experiments were conducted and in each the mean value for peak currents obtained -0.70 V vs. Ag/AgCl yielded excellent linear relationships with pesticide concentrations. The slope values for the calibration plots (method sensitivity) were 4.06 x 10(-3), 1.07 x 10(-2) and 2.95 x 10(-2) A mol(-1) L for purified water by differential pulse voltammetry, square wave voltammetry and multiple square wave voltammetry, respectively. For river water samples, the slope values were 2.60 x 10(-3), 1.06 x 10(-2) and 3.35 x 10(-2) A mol(-1) L, respectively, showing a small interference from the natural matrix components in paraquat determinations. The detection limits for paraquat determinations were calculated by two distinct methodologies, i.e., as proposed by IUPAC and a statistical method. The values obtained with multiple square waves voltammetry were 0.002 and 0.12 mu mol L-1, respectively, for pure water electrolytes. The detection limit from IUPAC recommendations, when inserted in the calibration curve equation, an analytical signal (oxidation current) is smaller than the one experimentally observed for the blank solution under the same experimental conditions. This is inconsistent with the definition of detection limit, thus the IUPAC methodology requires further discussion. The same conclusion can be drawn by the analyses of detection limits obtained with the other techniques studied.