3 resultados para semi-Riemannian manifolds
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
In this article, we study the Reidemeister torsion and the analytic torsion of the m dimensional disc, with the Ray and Singer homology basis (Adv Math 7:145-210, 1971). We prove that the Reidemeister torsion coincides with a power of the volume of the disc. We study the additional terms arising in the analytic torsion due to the boundary, using generalizations of the Cheeger-Muller theorem. We use a formula proved by Bruning and Ma (GAFA 16:767-873, 2006) that predicts a new anomaly boundary term beside the known term proportional to the Euler characteristic of the boundary (Luck, J Diff Geom 37:263-322, 1993). Some of our results extend to the case of the cone over a sphere, in particular we evaluate directly the analytic torsion for a cone over the circle and over the two sphere. We compare the results obtained in the low dimensional cases. We also consider a different formula for the boundary term given by Dai and Fang (Asian J Math 4:695-714, 2000), and we compare the results. The results of these work were announced in the study of Hartmann et al. (BUMI 2:529-533, 2009).
Resumo:
We prove some estimates on the spectrum of the Laplacian of the total space of a Riemannian submersion in terms of the spectrum of the Laplacian of the base and the geometry of the fibers. When the fibers of the submersions are compact and minimal, we prove that the spectrum of the Laplacian of the total space is discrete if and only if the spectrum of the Laplacian of the base is discrete. When the fibers are not minimal, we prove a discreteness criterion for the total space in terms of the relative growth of the mean curvature of the fibers and the mean curvature of the geodesic spheres in the base. We discuss in particular the case of warped products.
Resumo:
We study the coincidence theory of maps between two manifolds of the same dimension from an axiomatic viewpoint. First we look at coincidences of maps between manifolds where one of the maps is orientation true, and give a set of axioms such that characterizes the local index (which is an integer valued function). Then we consider coincidence theory for arbitrary pairs of maps between two manifolds. Similarly we provide a set of axioms which characterize the local index, which in this case is a function with values in Z circle plus Z(2). We also show in each setting that the group of values for the index (either Z or Z circle plus Z(2)) is determined by the axioms. Finally, for the general case of coincidence theory for arbitrary pairs of maps between two manifolds we provide a set of axioms which characterize the local Reidemeister trace which is an element of an abelian group which depends on the pair of functions. These results extend known results for coincidences between orientable differentiable manifolds. (C) 2012 Elsevier B.V. All rights reserved.