16 resultados para renal effects

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo


Relevância:

60.00% 60.00%

Publicador:

Resumo:

VEGF inhibition can promote renal vascular and parenchymal injury, causing proteinuria, hypertension and thrombotic microangiopathy. The mechanisms underlying these side effects are unclear. We investigated the renal effects of the administration, during 45 days, of sunitinib (Su), a VEGF receptor inhibitor, to rats with 5/6 renal ablation (Nx). Adult male Munich-Wistar rats were distributed among groups S+V, sham-operated rats receiving vehicle only; S+Su, S rats given Su, 4 mg/kg/day; Nx+V, Nx rats receiving V; and Nx+Su, Nx rats receiving Su. Su caused no change in Group S. Seven and 45 days after renal ablation, renal cortical interstitium was expanded, in association with rarefaction of peritubular capillaries. Su did not worsen hypertension, proteinuria or interstitial expansion, nor did it affect capillary rarefaction, suggesting little angiogenic activity in this model. Nx animals exhibited glomerulosclerosis (GS), which was aggravated by Su. This effect could not be explained by podocyte damage, nor could it be ascribed to tuft hypertrophy or hyperplasia. GS may have derived from organization of capillary microthrombi, frequently observed in Group Nx+Su. Treatment with Su did not reduce the fractional glomerular endothelial area, suggesting functional rather than structural cell injury. Chronic VEGF inhibition has little effect on normal rats, but can affect glomerular endothelium when renal damage is already present.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Lessa LM, Carraro-Lacroix LR, Crajoinas RO, Bezerra CN, Dariolli R, Girardi AC, Fonteles MC, Malnic G. Mechanisms underlying the inhibitory effects of uroguanylin on NHE3 transport activity in renal proximal tubule. Am J Physiol Renal Physiol 303: F1399-F1408, 2012. First published September 5, 2012; doi: 10.1152/ajprenal.00385.2011.-We previously demonstrated that uroguanylin (UGN) significantly inhibits Na+/H+ exchanger (NHE)3-mediated bicarbonate reabsorption. In the present study, we aimed to elucidate the molecular mechanisms underlying the action of UGN on NHE3 in rat renal proximal tubules and in a proximal tubule cell line (LLC-PK1). The in vivo studies were performed by the stationary microperfusion technique, in which we measured H+ secretion in rat renal proximal segments, through a H+-sensitive microelectrode. UGN (1 mu M) significantly inhibited the net of proximal bicarbonate reabsorption. The inhibitory effect of UGN was completely abolished by either the protein kinase G (PKG) inhibitor KT5823 or by the protein kinase A (PKA) inhibitor H-89. The effects of UGN in vitro were found to be similar to those obtained by microperfusion. Indeed, we observed that incubation of LLC-PK1 cells with UGN induced an increase in the intracellular levels of cAMP and cGMP, as well as activation of both PKA and PKG. Furthermore, we found that UGN can increase the levels of NHE3 phosphorylation at the PKA consensus sites 552 and 605 in LLC-PK1 cells. Finally, treatment of LLC-PK1 cells with UGN reduced the amount of NHE3 at the cell surface. Overall, our data suggest that the inhibitory effect of UGN on NHE3 transport activity in proximal tubule is mediated by activation of both cGMP/PKG and cAMP/PKA signaling pathways which in turn leads to NHE3 phosphorylation and reduced NHE3 surface expression. Moreover, this study sheds light on mechanisms by which guanylin peptides

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Abstract Background Exercise stress was shown to increase oxidative stress in rats. It lacks reports of increased protection afforded by dietary antioxidant supplements against ROS production during exercise stress. We evaluated the effects of vitamin E supplementation on renal non-enzymatic antioxidants in young rats submitted to exhaustive exercise stress. Methods Wistar rats were divided into three groups: 1) control group; 2) exercise stress group and; 3) exercise stress + Vitamin E group. Rats from the group 3 were treated with gavage administration of 1 mL of Vitamin E (5 mg/kg) for seven consecutive days. Animals from groups 2 and 3 were submitted to a bout of swimming exhaustive exercise stress. Kidney samples were analyzed for Thiobarbituric Acid Reactive Substances to (TBARS) by malondialdehyde (MDA), reduced glutathione (GSH) and vitamin-E levels. Results The group treated with vitamin E and submitted to exercise stress presented the lowest levels of renal MDA (1: 0.16+0.02 mmmol/mgprot vs. 2: 0.34+0.07 mmmol/mgprot vs. 3: 0.1+0.01 mmmol/mgprot; p < 0.0001), the highest levels of renal GSH (1: 23+4 μmol/gprot vs. 2: 23+2 μmol/gprot vs. 3: 58+9 μmol/gprot; p < 0.0001) and the highest levels of renal vitamin E (1: 24+6 μM/gtissue vs. 2: 28+2 μM/gtissue vs. 3: 43+4 μM/gtissue; p < 0.001). Conclusion Vitamin E supplementation improved non-enzymatic antioxidant activity in young rats submitted to exhaustive exercise stress.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background-It remains uncertain whether acetylcysteine prevents contrast-induced acute kidney injury. Methods and Results-We randomly assigned 2308 patients undergoing an intravascular angiographic procedure with at least 1 risk factor for contrast-induced acute kidney injury (age >70 years, renal failure, diabetes mellitus, heart failure, or hypotension) to acetylcysteine 1200 mg or placebo. The study drugs were administered orally twice daily for 2 doses before and 2 doses after the procedure. The allocation was concealed (central Web-based randomization). All analysis followed the intention-to-treat principle. The incidence of contrast-induced acute kidney injury (primary end point) was 12.7% in the acetylcysteine group and 12.7% in the control group (relative risk, 1.00; 95% confidence interval, 0.81 to 1.25; P = 0.97). A combined end point of mortality or need for dialysis at 30 days was also similar in both groups (2.2% and 2.3%, respectively; hazard ratio, 0.97; 95% confidence interval, 0.56 to 1.69; P = 0.92). Consistent effects were observed in all subgroups analyzed, including those with renal impairment. Conclusions-In this large randomized trial, we found that acetylcysteine does not reduce the risk of contrast-induced acute kidney injury or other clinically relevant outcomes in at-risk patients undergoing coronary and peripheral vascular angiography.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The deactivation of the inhibitory mechanisms with injections of moxonidine (alpha(2)-adrenoceptor/imidazoline receptor agonist) into the lateral parabrachial nucleus (LPBN) increases hypertonic NaCl intake by intra- or extracellular dehydrated rats. In the present study, we investigated the changes in the urinary sodium and volume, sodium balance, and plasma vasopressin and oxytocin in rats treated with intragastric (i.g.) 2 M NaCl load (2 ml/rat) combined with injections of moxonidine into the LPBN. Male Holtzman rats (n=5-12/group) with stainless steel cannulas implanted bilaterally into LPBN were used. Bilateral injections of moxonidine (0.5 nmol/0.2 mu l) into the LPBN decreased i.g. 2 M NaCIinduced diuresis (4.6 +/- 0.7 vs. vehicle: 7.4 +/- 0.6 ml/120 min) and natriuresis (1.65 +/- 0.29 vs. vehicle: 2.53 +/- 0.17 mEq/120 min), whereas the previous injection of the alpha(2)-adrenoceptor antagonist RX 821002 (10 nmol/0.2 mu l) into the LPBN abolished the effects of moxonidline. Moxonidine injected into the LPBN reduced i.g. 2 M NaCl-induced increase in plasma oxytocin and vasopressin (14.6 +/- 2.8 and 2.2 +/- 0.3 vs. vehicle: 25.7 +/- 7 and 4.3 +/- 0.7 pg/ml, respectively). Moxonidine injected into the LPBN combined with i.g. 2 M NaCl also increased 0.3 M NaCl intake (7.5 +/- 1.7 vs. vehicle: 0.5 +/- 0.2 mEq/2 h) and produced positive sodium balance (2.3 +/- 1.4 vs. vehicle: -1.2 +/- 0.4 mEq/2 h) in rats that had access to water and NaCl. The present results show that LPBN alpha(2)-adrenoceptor activation reduces renal and hormonal responses to intracellular dehydration and increases sodium and water intake, which facilitates sodium retention and body fluid volume expansion. (C) 2012 IBRO. Published by Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Tamoxifen, a selective estrogen receptor modulator, has antifibrotic properties; however, whether it can attenuate renal fibrosis is unknown. In this study, we tested the effects of tamoxifen in a model of hypertensive nephrosclerosis (chronic inhibition of nitric oxide synthesis with L-NAME). After 30 days, treated rats had significantly lower levels of albuminuria as well as lower histologic scores for glomerulosclerosis and interstitial fibrosis than untreated controls. Tamoxifen was renoprotective despite having no effect on the sustained, severe hypertension induced by L-NAME. Tamoxifen prevented the accumulation of extracellular matrix by decreasing the expression of collagen I, collagen III, and fibronectin mRNA and protein. These renoprotective effects associated with inhibition of TGF-beta 1 and plasminogen activator inhibitor-1, and with a significant reduction in a-smooth muscle actin-positive cells in the renal interstitium. Furthermore, tamoxifen abrogated IL-1 beta- and angiotensin-II-induced proliferation of fibroblasts from both kidney explants and from the NRK-49F cell line. Tamoxifen also inhibited the expression of extracellular matrix components and the production and release of TGF-beta 1 into the supernatant of these cells. In summary, tamoxifen exhibits antifibrotic effects in the L-NAME model of hypertensive nephrosclerosis, likely through the inhibition of TGF-beta 1, suggesting that it may have therapeutic use in CKD treatment.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Bucioli, SA, de Abreu, LC, Valenti, VE, and Vannucchi, H. Carnitine supplementation effects on nonenzymatic antioxidants in young rats submitted to exhaustive exercise stress. J Strength Cond Res 26(6): 1695-1700, 2012-Previous studies have demonstrated that exercise stress increases oxidative stress in rats. However, antioxidant supplement therapy effects on reactive oxygen substances are conflicting. We evaluated the effects of carnitine on renal nonenzymatic antioxidants in young rats submitted to exhaustive exercise stress. Wistar rats were divided into 3 groups: (a) control group (not submitted to exercise stress), (b) exercise stress group, and (c) exercise stress and carnitine group. The rats from group 3 were treated with gavage administration of 1 ml of carnitine (5 mg.kg(-1)) for 7 consecutive days. The animals from groups 2 and 3 were submitted to a bout of swimming exhaustive exercise stress. Kidney samples were analyzed for reactive substances to thiobarbituric acid by malondialdehyde (MDA), reduced glutathione (GSH), and vitamin-E levels. Carnitine treatment attenuated MDA increase caused by exercise stress (1:0.16 +/- 0.02 vs. 2:0.34 +/- 0.07 vs. 3:0.1 +/- 0.01 mmmol per milligram of protein; p < 0.0001). It also increased the renal levels of GSH (1:23 +/- 4 vs. 2:23 +/- 2 vs. 3:58 +/- 9 mu mol per gram of protein; p, 0.0001); however, it did not change renal vitamin E (1:24 +/- 5 vs. 2:27 +/- 1 vs. 3:28 +/- 5 mu M per gram of tissue; p < 0.001). In conclusion, carnitine improved oxidative stress and partially improved the nonenzymatic antioxidant activity in young rats submitted to exhaustive exercise stress.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objective: the purpose of this study was to investigate the effect of low-level laser therapy (LLLT) on chronic kidney disease (CKD) in a model of unilateral ureteral obstruction (UUO). Background data: Regardless of the etiology, CKD involves progressive widespread tissue fibrosis, tubular atrophy, and loss of kidney function. This process also occurs in kidney allograft. At present, effective therapies for this condition are lacking. We investigated the effects of LLLT on the interstitial fibrosis that occurs after experimental UUO in rats. Methods: The occluded kidney of half of the 32 Wistar rats that underwent UUO received a single intraoperative dose of LLLT (AlGaAs laser, 780 nm, 22.5 J/cm(2), 30mW, 0.75W/cm(2), 30 sec on each of nine points). After 14 days, renal fibrosis was assessed by Sirius red staining under polarized light. Immunohistochemical analyses quantitated the renal tissue cells that expressed fibroblast (FSP-1) and myofibroblast (alpha-SMA) markers. Reverse transcriptase polymerase chain reaction (RT-PCR) was performed to determine the mRNA expression of interleukin (IL)-6, monocyte chemotactic protein-1 (MCP-1), transforming growth factor (TGF)-beta 1 and Smad3. Results: The UUO and LLLT animals had less fibrosis than the UUO animals, as well having decreased expression inflammatory and pro-fibrotic markers. Conclusions: For the first time, we showed that LLLT had a protective effect regarding renal interstitial fibrosis. It is conceivable that by attenuating inflammation, LLLT can prevent tubular activation and transdifferentiation, which are the two processes that mainly drive the renal fibrosis of the UUO model.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Exercise training (ET) is an important intervention for chronic diseases such as diabetes mellitus (DM). However, it is not known whether previous exercise training intervention alters the physiological and medical complications of these diseases. We investigated the effects of previous ET on the progression of renal disease and cardiovascular autonomic control in rats with streptozotocin (STZ)-induced DM. Male Wistar rats were divided into five groups. All groups were followed for 15 weeks. Trained control and trained diabetic rats underwent 10 weeks of exercise training, whereas previously trained diabetic rats underwent 14 weeks of exercise training. Renal function, proteinuria, renal sympathetic nerve activity (RSNA) and the echocardiographic parameters autonomic modulation and baroreflex sensitivity (BRS) were evaluated. In the previously trained group, the urinary albumin/creatinine ratio was reduced compared with the sedentary diabetic and trained diabetic groups (p < 0.05). Additionally, RSNA was normalized in the trained diabetic and previously trained diabetic animals (p < 0.05). The ejection fraction was increased in the previously trained diabetic animals compared with the diabetic and trained diabetic groups (p < 0.05), and the myocardial performance index was improved in the previously trained diabetic group compared with the diabetic and trained diabetic groups (p < 0.05). In addition, the previously trained rats had improved heart rate variability and BRS in the tachycardic response and bradycardic response in relation to the diabetic group (p < 0.05). This study demonstrates that previous ET improves the functional damage that affects DM. Additionally, our findings suggest that the development of renal and cardiac dysfunction can be minimized by 4 weeks of ET before the induction of DM by STZ.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Aim: The renin-angiotensin-aldosterone system (RAAS) has dual pathways to angiotensin II production; therefore, multiple blockages may be useful in heart failure. In this study, we evaluated the short-term haemodynamic effects of aliskiren, a direct renin inhibitor, in patients with decompensated severe heart failure who were also taking angiotensin-converting enzyme ( ACE) inhibitors. Materials and methods: A total of 16 patients (14 men, two women, mean age: 60.3 years) were enrolled in the study. The inclusion criteria included hospitalisation due to decompensated heart failure, ACE inhibitor use, and an ejection fraction < 40% (mean: 21.9 +/- 6.7%). The exclusion criteria were: creatinine > 2.0 mg/dl, cardiac pacemaker, serum K+ > 5.5 mEq/l, and systolic blood pressure < 70 mmHg. Patients either received 150 mg/d aliskiren for 7 days (aliskiren group, n = 10) or did not receive aliskiren (control group, n = 6). Primary end points were systemic vascular resistance and cardiac index values. Repeated-measures analysis of variance (ANOVA) was used to assess variables before and after intervention. A two-sided p-value < 0.05 was considered statistically significant. Results: Compared to pre-intervention levels, systemic vascular resistance was reduced by 20.4% in aliskiren patients, but it increased by 2.9% in control patients (p = 0.038). The cardiac index was not significantly increased by 19.0% in aliskiren patients, but decreased by 8.4% in control patients (p = 0.127). No differences in the pulmonary capillary or systolic blood pressure values were observed between the groups. Conclusion: Aliskiren use reduced systemic vascular resistance in patients with decompensated heart failure taking ACE inhibitors.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: Altered levels of matrix metalloproteinases (MMPs) and their inhibitors, the tissue inhibitors of metalloproteinases (TIMPs), are involved in cardiovascular alterations associated with end stage kidney disease (ESKD). Genetic polymorphisms in MMP-9 gene affect MMP-9 levels. We examined how MMP-9 polymorphisms and haplotypes affect the changes in plasma MMP-9 and TIMP-1 levels found in patients with ESKD undergoing hemodialysis. Methods: We studied 94 ESKD patients undergoing hemodialysis for at least 3 months. MMP-9 and TIMP-1 were measured by ELISA in plasma from blood samples collected before and after a session of hemodialysis. Genotypes for three MMP-9 polymorphisms (C-1562T, rs3918242; -90 (CA)(14-24), rs2234681; and Q279R, rs17576) were determined by Taqman (R) Allele Discrimination Assay and real-time polymerase chain reaction. Haplotype frequencies were determined with the software program PHASE 2.1. Results: Hemodialysis increased MMP-9 and TIMP-1 levels (P<0.05). Genotypes had no effects on baseline MMP-9 and TIMP-1 levels (P>0.05). Hemodialysis increased MMP-9 and TIMP-1 levels in subjects with the CC (but not CT or TT) genotype for the C-1562T polymorphism (P<0.05), and increased MMP-9 levels in subjects with the QQ (but not QR or RR) genotype for the Q279R polymorphism (P<0.05), whereas the CA(n)(14-24) polymorphism had no major effects. While MMP-9 haplotypes had no effects on baseline MMP-9 levels (P>0.05), hemodialysis increased MMP-9 levels and MMP-9/TIMP-1 ratios in subjects carrying the CLQ haplotype (P = 0.0012 and P = 0.0045, respectively). Conclusion: ESKD patients with the QQ genotype for the Q279R polymorphism or with the CLQ haplotype are exposed to more severe increases in MMP-9 levels after hemodialysis. Such patients may benefit from the use of MMP inhibitors. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cyclosporine (CsA) remains an important immunosuppressant for transplantation and for treatment of autoimmune diseases. The most troublesome side effect of CsA is renal injury. Acute CsA-induced nephrotoxicity is characterized by reduced renal blood flow (RBF) and glomerular filtration rate (GFR) due to afferent arteriole vasoconstriction. Annexin A1 (ANXA1) is a potent anti-inflammatory protein with protective effect in renal ischemia/reperfusion injury. Here we study the effects of ANXA1 treatment in an experimental model of acute CsA nephrotoxicity. Salt-depleted rats were randomized to treatment with VH (vehicles 1 mL/kg body weight/day), ANXA1 (Ac2-26 peptide 1 mg/kg body weight/day intraperitoneally), CsA (20 mg/kg body weight/day subcutaneously) and CsA + ANXA1 (combination) for seven days. We compared renal function and hemodynamics, renal histopathology, renal tissue macrophage infiltration and renal ANXA1 expression between the four groups. CsA significantly impaired GFR and RBF, caused tubular dilation and macrophage infiltration and increased ANXA1 renal tissue expression. Treatment with ANXA1 attenuated CSA-induced hemodynamic changes, tubular injury and macrophage infiltration. ANXA1 treatment attenuated renal hemodynamic injury and inflammation in an acute CsA nephrotoxicity model.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cisplatin is a highly effective chemotherapeutic drug; however, its use is limited by nephrotoxicity. Studies showed that the renal injury produced by cisplatin involves oxidative stress and cell death mediated by apoptosis and necrosis in proximal tubular cells. The use of antioxidants to decrease cisplatin-induced renal cell death was suggested as a potential therapeutic measure. In this study the possible protective effects of carvedilol, a beta blocker with antioxidant activity, was examined against cisplatin-induced apoptosis in HK-2 human kidney proximal tubular cells. The mitochondrial events involved in this protection were also investigated. Four groups were used: controls (C), cisplatin alone at 25 mu M (CIS), cisplatin 25 mu M plus carvedilol 50 mu M (CV + CIS), and carvedilol alone 50 mu M (CV). Cell viability, apoptosis, caspase-9, and caspase-3 were determined. Data demonstrated that carvedilol effectively increased cell viability and minimized caspase activation and apoptosis in HK-2 cells, indicating this may be a promising drug to reduce nephrotoxicity induced by cisplatin.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: Despite advances in supportive care, sepsis-related mortality remains high, especially in patients with acute kidney injury (AKI). Erythropoietin can protect organs against ischemia and sepsis. This effect has been linked to activation of intracellular survival pathways, although the mechanism remains unclear. Continuous erythropoietin receptor activator (CERA) is an erythropoietin with a unique pharmacologic profile and long half-life. We hypothesized that pretreatment with CERA would be renoprotective in the cecal ligation and puncture (CLP) model of sepsis-induced AKI. Methods: Rats were randomized into three groups: control; CLP; and CLP+CERA (5 mu g/kg body weight, i.p. administered 24 h before CLP). At 24 hours after CLP, we measured creatinine clearance, biochemical variables, and hemodynamic parameters. In kidney tissue, we performed immunoblotting-to quantify expression of the Na-K-2Cl cotransporter (NKCC2), aquaporin 2 (AQP2), Toll-like receptor 4 (TLR4), erythropoietin receptor (EpoR), and nuclear factor kappa B (NF-kappa B)-and immunohistochemical staining for CD68 (macrophage infiltration). Plasma interleukin (IL)-2, IL-1 beta, IL-6, IL-10, interferon gamma, and tumor necrosis factor alpha were measured by multiplex detection. Results: Pretreatment with CERA preserved creatinine clearance and tubular function, as well as the expression of NKCC2 and AQP2. In addition, CERA maintained plasma lactate at normal levels, as well as preserving plasma levels of transaminases and lactate dehydrogenase. Renal expression of TLR4 and NF-kappa B was lower in CLP+CERA rats than in CLP rats (p<0.05 and p<0.01, respectively), as were CD68-positive cell counts (p<0.01), whereas renal EpoR expression was higher (p<0.05). Plasma levels of all measured cytokines were lower in CLP+CERA rats than in CLP rats. Conclusion: CERA protects against sepsis-induced AKI. This protective effect is, in part, attributable to suppression of the inflammatory response.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

OBJECTIVE To assess the effects of atorvastatin (ATORV) on renal function after bilateral ureteral obstruction (BUO), measuring inulin clearance and its effect on renal hemodynamic, filtration, and inflammatory response, as well as the expression of Aquaporin-2 (AQP2) in response to BUO and after the release of BUO. METHODS Adult Munich-Wistar male rats were subjected to BUO for 24 hours and monitored during the following 48 hours. Rats were divided into 5 groups: sham operated (n = 6); sham + ATORV (n = 6); BUO (n = 6); BUO + ATORV (10 mg/kg in drinking water started 2 days before BUO [n = 5]; and BUO + ATORV (10 mg/kg in drinking water started on the day of the release of BUO [n = 5]). We measured blood pressure (BP, mm Hg); inulin clearance (glomerular filtration rate [GFR]; mL/min/100 g); and renal blood flow (RBF, mL/min, by transient-time flowmeter). Inflammatory response was evaluated by histologic analysis of the interstitial area. AQP2 expression was evaluated by electrophoresis and immunoblotting. RESULTS Renal function was preserved by ATORV treatment, even if initiated on the day of obstruction release, as expressed by GFR, measured by inulin clearance. Relative interstitial area was decreased in both BUO + ATORV groups. Urine osmolality was improved in the ATORV-treated groups. AQP2 protein expression decreased in BUO animals and was reverted by ATORV treatment. CONCLUSION ATORV administration significantly prevented and restored impairment in GFR and renal vascular resistance. Furthermore, ATORV also improved urinary concentration by reversing the BUO-induced downregulation of AQP2. These findings have significant clinical implication in treating obstructive nephropathy. UROLOGY 80: 485.e15-485.e20, 2012. (c) 2012 Elsevier Inc.