13 resultados para random number generation
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
We investigate the nonequilibrium roughening transition of a one-dimensional restricted solid-on-solid model by directly sampling the stationary probability density of a suitable order parameter as the surface adsorption rate varies. The shapes of the probability density histograms suggest a typical Ginzburg-Landau scenario for the phase transition of the model, and estimates of the "magnetic" exponent seem to confirm its mean-field critical behavior. We also found that the flipping times between the metastable phases of the model scale exponentially with the system size, signaling the breaking of ergodicity in the thermodynamic limit. Incidentally, we discovered that a closely related model not considered before also displays a phase transition with the same critical behavior as the original model. Our results support the usefulness of off-critical histogram techniques in the investigation of nonequilibrium phase transitions. We also briefly discuss in the appendix a good and simple pseudo-random number generator used in our simulations.
Resumo:
In epidemiology, the basic reproduction number R-0 is usually defined as the average number of new infections caused by a single infective individual introduced into a completely susceptible population. According to this definition. R-0 is related to the initial stage of the spreading of a contagious disease. However, from epidemiological models based on ordinary differential equations (ODE), R-0 is commonly derived from a linear stability analysis and interpreted as a bifurcation parameter: typically, when R-0 >1, the contagious disease tends to persist in the population because the endemic stationary solution is asymptotically stable: when R-0 <1, the corresponding pathogen tends to naturally disappear because the disease-free stationary solution is asymptotically stable. Here we intend to answer the following question: Do these two different approaches for calculating R-0 give the same numerical values? In other words, is the number of secondary infections caused by a unique sick individual equal to the threshold obtained from stability analysis of steady states of ODE? For finding the answer, we use a susceptibleinfective-recovered (SIR) model described in terms of ODE and also in terms of a probabilistic cellular automaton (PCA), where each individual (corresponding to a cell of the PCA lattice) is connected to others by a random network favoring local contacts. The values of R-0 obtained from both approaches are compared, showing good agreement. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
In this paper is presented a multilayer perceptron neural network combined with the Nelder-Mead Simplex method to detect damage in multiple support beams. The input parameters are based on natural frequencies and modal flexibility. It was considered that only a number of modes were available and that only vertical degrees of freedom were measured. The reliability of the proposed methodology is assessed from the generation of random damages scenarios and the definition of three types of errors, which can be found during the damage identification process. Results show that the methodology can reliably determine the damage scenarios. However, its application to large beams may be limited by the high computational cost of training the neural network.
Resumo:
Mach number and thermal effects on the mechanisms of sound generation and propagation are investigated in spatially evolving two-dimensional isothermal and non-isothermal mixing layers at Mach number ranging from 0.2 to 0.4 and Reynolds number of 400. A characteristic-based formulation is used to solve by direct numerical simulation the compressible Navier-Stokes equations using high-order schemes. The radiated sound is directly computed in a domain that includes both the near-field aerodynamic source region and the far-field sound propagation. In the isothermal mixing layer, Mach number effects may be identified in the acoustic field through an increase of the directivity associated with the non-compactness of the acoustic sources. Baroclinic instability effects may be recognized in the non-isothermal mixing layer, as the presence of counter-rotating vorticity layers, the resulting acoustic sources being found less efficient. An analysis based on the acoustic analogy shows that the directivity increase with the Mach number can be associated with the emergence of density fluctuations of weak amplitude but very efficient in terms of noise generation at shallow angle. This influence, combined with convection and refraction effects, is found to shape the acoustic wavefront pattern depending on the Mach number.
Resumo:
Objective: This study aimed to investigate the effect of 830 and 670 nm diode laser on the viability of random skin flaps in rats. Background data: Low-level laser therapy (LLLT) has been reported to be successful in stimulating the formation of new blood vessels and reducing the inflammatory process after injury. However, the efficiency of such treatment remains uncertain, and there is also some controversy regarding the efficacy of different wavelengths currently on the market. Materials and methods: Thirty Wistar rats were used and divided into three groups, with 10 rats in each. A random skin flap was raised on the dorsum of each animal. Group 1 was the control group, group 2 received 830 nm laser radiations, and group 3 was submitted to 670 nm laser radiation (power density = 0.5 mW/cm(2)). The animals underwent laser therapy with 36 J/cm(2) energy density (total energy = 2.52 J and 72 sec per session) immediately after surgery and on the 4 subsequent days. The application site of laser radiation was one point at 2.5 cm from the flap's cranial base. The percentage of skin flap necrosis area was calculated on the 7th postoperative day using the paper template method. A skin sample was collected immediately after to determine the vascular endothelial growth factor (VEGF) expression and the epidermal cell proliferation index (KiD67). Results: Statistically significant differences were found among the percentages of necrosis, with higher values observed in group 1 compared with groups 2 and 3. No statistically significant differences were found among these groups using the paper template method. Group 3 presented the highest mean number of blood vessels expressing VEGF and of cells in the proliferative phase when compared with groups 1 and 2. Conclusions: LLLT was effective in increasing random skin flap viability in rats. The 670 nm laser presented more satisfactory results than the 830 nm laser.
Resumo:
The measurement called accessibility has been proposed as a means to quantify the efficiency of the communication between nodes in complex networks. This article reports results regarding the properties of accessibility, including its relationship with the average minimal time to visit all nodes reachable after h steps along a random walk starting from a source, as well as the number of nodes that are visited after a finite period of time. We characterize the relationship between accessibility and the average number of walks required in order to visit all reachable nodes (the exploration time), conjecture that the maximum accessibility implies the minimal exploration time, and confirm the relationship between the accessibility values and the number of nodes visited after a basic time unit. The latter relationship is investigated with respect to three types of dynamics: traditional random walks, self-avoiding random walks, and preferential random walks.
Resumo:
Second generation antipsychotics (SGAs) have been linked to metabolic and bone disorders in clinical studies, but the mechanisms of these side effects remain unclear. Additionally, no studies have examined whether SGAs cause bone loss in mice. Using in vivo and in vitro modeling we examined the effects of risperidone, the most commonly prescribed SGA, on bone in C57BL6/J (B6) mice. Mice were treated with risperidone orally by food supplementation at a dose of 1.25 mg/kg daily for 5 and 8 weeks, starting at 3.5 weeks of age. Risperidone reduced trabecular BV/TV, trabecular number and percent cortical area. Trabecular histomorphometry demonstrated increased resorption parameters, with no change in osteoblast number or function. Risperidone also altered adipose tissue distribution such that white adipose tissue mass was reduced and liver had significantly higher lipid infiltration. Next, in order to tightly control risperidone exposure, we administered risperidone by chronic subcutaneous infusion with osmotic minipumps (0.5 mg/kg daily for 4 weeks) in 7 week old female B6 mice. Similar trabecular and cortical bone differences were observed compared to the orally treated groups (reduced trabecular BV/TV, and connectivity density, and reduced percent cortical area) with no change in body mass, percent body fat, glucose tolerance or insulin sensitivity. Unlike in orally treated mice, risperidone infusion reduced bone formation parameters (serum P1NP, MAR and BFR/BV). Resorption parameters were elevated, but this increase did not reach statistical significance. To determine if risperidone could directly affect bone cells, primary bone marrow cells were cultured with osteoclast or osteoblast differentiation media. Risperidone was added to culture medium in clinically relevant doses of 0, 2.5 or 25 ng/ml. The number of osteoclasts was significantly increased by addition in vitro of risperidone while osteoblast differentiation was not altered. These studies indicate that risperidone treatment can have negative skeletal consequences by direct activation of osteoclast activity and by indirect non-cell autonomous mechanisms. Our findings further support the tenet that the negative side effects of SGAs on bone mass should be considered when weighing potential risks and benefits, especially in children and adolescents who have not yet reached peak bone mass. This article is part of a Special Issue entitled: Interactions Between Bone, Adipose Tissue and Metabolism. (C) 2011 Elsevier Inc. All rights reserved.
Resumo:
We prove that asymptotically (as n -> infinity) almost all graphs with n vertices and C(d)n(2-1/2d) log(1/d) n edges are universal with respect to the family of all graphs with maximum degree bounded by d. Moreover, we provide an efficient deterministic embedding algorithm for finding copies of bounded degree graphs in graphs satisfying certain pseudorandom properties. We also prove a counterpart result for random bipartite graphs, where the threshold number of edges is even smaller but the embedding is randomized.
Resumo:
A model for computing the generation-recombination noise due to traps within the semiconductor film of fully depleted silicon-on-insulator MOSFET transistors is presented. Dependence of the corner frequency of the Lorentzian spectra on the gate voltage is addressed in this paper, which is different to the constant behavior expected for bulk transistors. The shift in the corner frequency makes the characterization process easier. It helps to identify the energy position, capture cross sections, and densities of the traps. This characterization task is carried out considering noise measurements of two different candidate structures for single-transistor dynamic random access memory devices.
Resumo:
Elevated levels of copper have been detected in various types of human cancer cells, such as breast cancer cells, and a number of mechanisms have been proposed to explain the action and influence of copper on tumor progress. In this work, we found that stimulating the proliferation of mammary epithelial MCF7 cells with the high-redox-potential copper complex Cu (GlyGlyHis) is associated with the copper-induced intracellular generation of reactive oxygen species (ROS) that induces lipid peroxidation and causes increased roughness of external cell membranes, which leads to the formation of larger cell domes. The results presented herein provide new insights into the molecular link between copper and the proliferation of breast cancer cells and, consequently, into the mechanism by which changes in redox balance and ROS accumulation regulates cell membrane roughness. (C) 2012 Elsevier Inc. All rights reserved.
Resumo:
The objective of this study was to estimate (co)variance components using random regression on B-spline functions to weight records obtained from birth to adulthood. A total of 82 064 weight records of 8145 females obtained from the data bank of the Nellore Breeding Program (PMGRN/Nellore Brazil) which started in 1987, were used. The models included direct additive and maternal genetic effects and animal and maternal permanent environmental effects as random. Contemporary group and dam age at calving (linear and quadratic effect) were included as fixed effects, and orthogonal Legendre polynomials of age (cubic regression) were considered as random covariate. The random effects were modeled using B-spline functions considering linear, quadratic and cubic polynomials for each individual segment. Residual variances were grouped in five age classes. Direct additive genetic and animal permanent environmental effects were modeled using up to seven knots (six segments). A single segment with two knots at the end points of the curve was used for the estimation of maternal genetic and maternal permanent environmental effects. A total of 15 models were studied, with the number of parameters ranging from 17 to 81. The models that used B-splines were compared with multi-trait analyses with nine weight traits and to a random regression model that used orthogonal Legendre polynomials. A model fitting quadratic B-splines, with four knots or three segments for direct additive genetic effect and animal permanent environmental effect and two knots for maternal additive genetic effect and maternal permanent environmental effect, was the most appropriate and parsimonious model to describe the covariance structure of the data. Selection for higher weight, such as at young ages, should be performed taking into account an increase in mature cow weight. Particularly, this is important in most of Nellore beef cattle production systems, where the cow herd is maintained on range conditions. There is limited modification of the growth curve of Nellore cattle with respect to the aim of selecting them for rapid growth at young ages while maintaining constant adult weight.
Resumo:
Abstract Background A large number of probabilistic models used in sequence analysis assign non-zero probability values to most input sequences. To decide when a given probability is sufficient the most common way is bayesian binary classification, where the probability of the model characterizing the sequence family of interest is compared to that of an alternative probability model. We can use as alternative model a null model. This is the scoring technique used by sequence analysis tools such as HMMER, SAM and INFERNAL. The most prevalent null models are position-independent residue distributions that include: the uniform distribution, genomic distribution, family-specific distribution and the target sequence distribution. This paper presents a study to evaluate the impact of the choice of a null model in the final result of classifications. In particular, we are interested in minimizing the number of false predictions in a classification. This is a crucial issue to reduce costs of biological validation. Results For all the tests, the target null model presented the lowest number of false positives, when using random sequences as a test. The study was performed in DNA sequences using GC content as the measure of content bias, but the results should be valid also for protein sequences. To broaden the application of the results, the study was performed using randomly generated sequences. Previous studies were performed on aminoacid sequences, using only one probabilistic model (HMM) and on a specific benchmark, and lack more general conclusions about the performance of null models. Finally, a benchmark test with P. falciparum confirmed these results. Conclusions Of the evaluated models the best suited for classification are the uniform model and the target model. However, the use of the uniform model presents a GC bias that can cause more false positives for candidate sequences with extreme compositional bias, a characteristic not described in previous studies. In these cases the target model is more dependable for biological validation due to its higher specificity.
Resumo:
Energy transfer (ET) and heat generation processes in Yb3+/Ho3+-codoped low-silica calcium aluminosilicate glasses were investigated using thermal lens (TL) and photoluminescence measurements looking for the emission around 2.0 μm. Stepwise ET processes from Yb3+ to Ho3+, upon excitation at 0.976 μm, produced highly efficient emission in the mid-infrared range at around 2.0 μm, with high fluorescence quantum efficiency (η1 ∼ 0.85 and independent of Ho3+ concentration) and relatively very low thermal loading (<0.4) for concentration up to 1.5% of Ho2O3. An equation was deduced for the description of the TL results that provided the absolute value of η1 and the number of emitted photons at 2.0 μm per absorbed pump photon by the Yb3+ ions, the latter reaching 60% for the highest Ho3+ concentration. These results suggest that the studied codoped system would be a promising candidate for the construction of photonic devices, especially for medical applications.