21 resultados para quantitative real-time RT-PCR
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
Fast-track Diagnostics respiratory pathogens (FTDRP) multiplex real-time RT-PCR assay was compared with in-house singleplex real-time RT-PCR assays for detection of 16 common respiratory viruses. The FTDRP assay correctly identified 26 diverse respiratory virus strains, 35 of 41 (85%) external quality assessment samples spiked with cultured virus and 232 of 263 (88%) archived respiratory specimens that tested positive for respiratory viruses by in-house assays. Of 308 prospectively tested respiratory specimens selected from children hospitalized with acute respiratory illness, 270 (87.7%) and 265 (86%) were positive by FTDRP and in-house assays for one or more viruses, respectively, with combined test results showing good concordance (K=0.812, 95% CI = 0.786-0.838). Individual FTDRP assays for adenovirus, respiratory syncytial virus and rhinovirus showed the lowest comparative sensitivities with in-house assays, with most discrepancies occurring with specimens containing low virus loads and failed to detect some rhinovirus strains, even when abundant. The FTDRP enterovirus and human bocavirus assays appeared to be more sensitive than the in-house assays with some specimens. With the exceptions noted above, most FTDRP assays performed comparably with in-house assays for most viruses while offering enhanced throughput and easy integration by laboratories using conventional real-time PCR instrumentation. Published by Elsevier B.V.
Resumo:
Background To better characterize the pathophysiology of juvenile nasopharyngeal angiofibroma (JNA), endothelial and stromal cells were evaluated by genomic imbalances in association with transcript expression levels of genes mapped on these altered regions. Methods. High-resolution comparative genomic hybridization (HR-CGH) was used in laser-captured endothelial and stromal cells from 9 JNAs. Ten genes were evaluated by quantitative real-timereverse transcription polymerase chain reaction (qRT-PCR) in 15 cases. Results. Although gains were more frequently detected in endothelial cells, 57% of chromosomal alterations were common by both components. Gene expression analyses revealed a positive correlation between endothelial and stromal components for ASPM, CDH1, CTNNB1, FGF18, and SUPT16H. A significant difference was found for FGF18 and AURKB overexpression in stromal cells and AR down-expression in endothelial cells. Conclusions. A similar pattern of gene expression and chromosomal imbalances in both exponents would suggest a common mechanism of functional regulation. AURKB, FGF18, and SUPT16H were identified as potential molecular markers in JNA. (C) 2011 Wiley Periodicals, Inc. Head Neck 34: 485-492, 2012
Resumo:
The study of spermatogonial stem cells (SSCs) provides a model to better understand adult stem cell biology. Besides the biomedical potential to perform studies of infertility in many species, SSCs hold a promising application at animal transgenesis. Because stem cells are thought to be associated with basement membranes, expression of alpha-6 integrin has been investigated as a marker of type A spermatogonial cells, which are considered SSCs because of their undifferentiated status and self-renewal ability. In this manner, the aim of this study was to isolate type A SSCs from adult bulls by a two-step enzymatic procedure followed by a discontinuous Percoll density gradient purification and verify the expression of alpha-6 integrin by flow cytometry and real-time RT-PCR before and after Percoll purification. Spermatogonial cells were successfully obtained using the two-step enzymatic digestion. An average of 1 x 10(5) viable cells per gram of testis was isolated. However, the discontinuous Percoll did not purify isolated cells regarding alpha-6 integrin expression. Flow cytometry analysis demonstrated no differences in the alpha-6 integrin expression between cell samples before and after Percoll purification (p = 0.5636). The same was observed in the real-time PCR analysis (p > 0.05). In addition to alpha-6 integrin, the expression of GFR alpha-1 and PGP9.5, known bovine SSCs markers, was detected in all samples studied. Considering that Percoll can reduce cell viability, it is possible to conclude that Percoll density gradient is not suitable to purify bovine SSC, according to alpha-6 integrin expression.
Resumo:
Background. Previous knowledge of cervical lymph node compromise may be crucial to choose the best treatment strategy in oral squamous cell carcinoma (OSCC). Here we propose a set four genes, whose mRNA expression in the primary tumor predicts nodal status in OSCC, excluding tongue. Material and methods. We identified differentially expressed genes in OSCC with and without compromised lymph nodes using Differential Display RT-PCR. Known genes were chosen to be validated by means of Northern blotting or real time RT-PCR (qRT-PCR). Thereafter we constructed a Nodal Index (NI) using discriminant analysis in a learning set of 35 patients, which was further validated in a second independent group of 20 patients. Results. Of the 63 differentially expressed known genes identified comparing three lymph node positive (pN+) and three negative (pN0) primary tumors, 23 were analyzed by Northern analysis or RT-PCR in 49 primary tumors. Six genes confirmed as differentially expressed were used to construct a NI, as the best set predictive of lymph nodal status, with the final result including four genes. The NI was able to correctly classify 32 of 35 patients comprising the learning group (88.6%; p = 0.009). Casein kinase 1alpha1 and scavenger receptor class B, member 2 were found to be up regulated in pN + group in contrast to small proline-rich protein 2B and Ras-GTPase activating protein SH3 domain-binding protein 2 which were upregulated in the pN0 group. We validated further our NI in an independent set of 20 primary tumors, 11 of them pN0 and nine pN+ with an accuracy of 80.0% (p = 0.012). Conclusions. The NI was an independent predictor of compromised lymph nodes, taking into the consideration tumor size and histological grade. The genes identified here that integrate our "Nodal Index" model are predictive of lymph node metastasis in OSCC.
Resumo:
Many studies indicate that thimet oligopeptidase (EC3.4.24.15; TOP) can be implicated in the metabolism of bioactive peptides, including dynorphin 1-8, alpha-neoendorphin, beta-neoendorphin and GnRH. Furthermore, the higher levels of this peptidase are found in neuroendocrine tissue and testis. In the present study, we have evaluated the effect of acute cocaine administration in male rats on TOP specific activity and mRNA levels in prosencephalic brain areas related with the reward circuitry; ventral striatum, hippocampus, and frontal cortex. No significant differences on TOP specific activity were detected in the hippocampus and frontal cortex of cocaine treated animals compared to control vehicle group. However, a significant increase in activity was observed in the ventral striatum of cocaine treated-rats. The increase occurred in both, TOP specific activity and TOP relative mRNA amount determined by real time RT-PCR. As TOP can be implicated in the processing of many neuropeptides, and previous studies have shown that cocaine also alters the gene expression of proenkephalin and prodynorphin in the striatum, the present findings suggest that TOP changes in the brain could play important role in the balance of neuropeptide level correlated with cocaine effects. (C) 2012 Elsevier Inc. All rights reserved.
Resumo:
Dengue fever is a noncontagious infectious disease caused by dengue virus (DENV). DENV belongs to the family Flaviviridae, genus Flavivirus, and is classified into four antigenically distinct serotypes: DENV-1, DENV-2, DENV-3, and DENV-4. The number of nations and people affected has increased steadily and today is considered the most widely spread arbovirus (arthropod-borne viral disease) in the world. The absence of an appropriate animal model for studying the disease has hindered the understanding of dengue pathogenesis. In our study, we have found that immunocompetent C57BL/6 mice infected intraperitoneally with DENV-1 presented some signs of dengue disease such as thrombocytopenia, spleen hemorrhage, liver damage, and increase in production of IFN gamma and TNF alpha cytokines. Moreover, the animals became viremic and the virus was detected in several organs by real-time RT-PCR. Thus, this animal model could be used to study mechanism of dengue virus infection, to test antiviral drugs, as well as to evaluate candidate vaccines.
Resumo:
Limited information is available regarding the modulation of genes involved in the innate host response to Paracoccidioides brasiliensis, the etiologic agent of paracoccidioidomycosis. Therefore, we sought to characterize, for the first time, the transcriptional profile of murine bone marrow-derived dendritic cells (DCs) at an early stage following their initial interaction with P. brasiliensis. DCs connect innate and adaptive immunity by recognizing invading pathogens and determining the type of effector T-cell that mediates an immune response. Gene expression profiles were analyzed using microarray and validated using real-time RT-PCR and protein secretion studies. A total of 299 genes were differentially expressed, many of which are involved in immunity, signal transduction, transcription and apoptosis. Genes encoding the cytokines IL-12 and TNF-alpha, along with the chemokines CCL22, CCL27 and CXCL10, were up-regulated, suggesting that P. brasiliensis induces a potent proinflammatory response in DCs. In contrast, pattern recognition receptor (PRR)-encoding genes, particularly those related to Toll-like receptors, were down-regulated or unchanged. This result prompted us to evaluate the expression profiles of dectin-1 and mannose receptor, two other important fungal PRRs that were not included in the microarray target cDNA sequences. Unlike the mannose receptor, the dectin-1 receptor gene was significantly induced, suggesting that this beta-glucan receptor participates in the recognition of P. brasiliensis. We also used a receptor inhibition assay to evaluate the roles of these receptors in coordinating the expression of several immune-related genes in DCs upon fungal exposure. Altogether, our results provide an initial characterization of early host responses to P. brasiliensis and a basis for better understanding the infectious process of this important neglected pathogen.
Resumo:
Abstract Background Myelodysplastic syndromes (MDS) are a group of clonal hematological disorders characterized by ineffective hematopoiesis with morphological evidence of marrow cell dysplasia resulting in peripheral blood cytopenia. Microarray technology has permitted a refined high-throughput mapping of the transcriptional activity in the human genome. Non-coding RNAs (ncRNAs) transcribed from intronic regions of genes are involved in a number of processes related to post-transcriptional control of gene expression, and in the regulation of exon-skipping and intron retention. Characterization of ncRNAs in progenitor cells and stromal cells of MDS patients could be strategic for understanding gene expression regulation in this disease. Methods In this study, gene expression profiles of CD34+ cells of 4 patients with MDS of refractory anemia with ringed sideroblasts (RARS) subgroup and stromal cells of 3 patients with MDS-RARS were compared with healthy individuals using 44 k combined intron-exon oligoarrays, which included probes for exons of protein-coding genes, and for non-coding RNAs transcribed from intronic regions in either the sense or antisense strands. Real-time RT-PCR was performed to confirm the expression levels of selected transcripts. Results In CD34+ cells of MDS-RARS patients, 216 genes were significantly differentially expressed (q-value ≤ 0.01) in comparison to healthy individuals, of which 65 (30%) were non-coding transcripts. In stromal cells of MDS-RARS, 12 genes were significantly differentially expressed (q-value ≤ 0.05) in comparison to healthy individuals, of which 3 (25%) were non-coding transcripts. Conclusions These results demonstrated, for the first time, the differential ncRNA expression profile between MDS-RARS and healthy individuals, in CD34+ cells and stromal cells, suggesting that ncRNAs may play an important role during the development of myelodysplastic syndromes.
Resumo:
Abstract Background Propolis is a natural product of plant resins collected by honeybees (Apis mellifera) from various plant sources. Our previous studies indicated that propolis sensitivity is dependent on the mitochondrial function and that vacuolar acidification and autophagy are important for yeast cell death caused by propolis. Here, we extended our understanding of propolis-mediated cell death in the yeast Saccharomyces cerevisiae by applying systems biology tools to analyze the transcriptional profiling of cells exposed to propolis. Methods We have used transcriptional profiling of S. cerevisiae exposed to propolis. We validated our findings by using real-time PCR of selected genes. Systems biology tools (physical protein-protein interaction [PPPI] network) were applied to analyse the propolis-induced transcriptional bevavior, aiming to identify which pathways are modulated by propolis in S. cerevisiae and potentially influencing cell death. Results We were able to observe 1,339 genes modulated in at least one time point when compared to the reference time (propolis untreated samples) (t-test, p-value 0.01). Enrichment analysis performed by Gene Ontology (GO) Term finder tool showed enrichment for several biological categories among the genes up-regulated in the microarray hybridization such as transport and transmembrane transport and response to stress. Real-time RT-PCR analysis of selected genes showed by our microarray hybridization approach was capable of providing information about S. cerevisiae gene expression modulation with a considerably high level of confidence. Finally, a physical protein-protein (PPPI) network design and global topological analysis stressed the importance of these pathways in response of S. cerevisiae to propolis and were correlated with the transcriptional data obtained thorough the microarray analysis. Conclusions In summary, our data indicate that propolis is largely affecting several pathways in the eukaryotic cell. However, the most prominent pathways are related to oxidative stress, mitochondrial electron transport chain, vacuolar acidification, regulation of macroautophagy associated with protein target to vacuole, cellular response to starvation, and negative regulation of transcription from RNA polymerase II promoter. Our work emphasizes again the importance of S. cerevisiae as a model system to understand at molecular level the mechanism whereby propolis causes cell death in this organism at the concentration herein tested. Our study is the first one that investigates systematically by using functional genomics how propolis influences and modulates the mRNA abundance of an organism and may stimulate further work on the propolis-mediated cell death mechanisms in fungi.
Resumo:
Background The significant biodiversity found in Brazil is a potential for the emergence of new zoonoses. Study in some places of the world suggest of the presence to hantavirus in tissues of bats. Researches of hantavirus in wildlife, out rodents, are very scarce in Brazil. Therefore we decided to investigate in tissues of different species of wild animals captured in the same region where rodents were detected positive for this virus. The present work analyzed ninety-one animals (64 rodents, 19 opossums, and 8 bats) from a region of the Atlantic forest in Biritiba Mirin City, São Paulo State, Brazil. Lungs and kidneys were used for RNA extraction. Findings The samples were screened for evidence of hantavirus infection by SYBR-Green-based real-time RT-PCR. Sixteen samples positive were encountered among the wild rodents, bats, and opossums. The detection of hantavirus in the lungs and kidneys of three marsupial species (Micoureus paraguayanus, Monodelphis ihering, and Didelphis aurita) as well in two species of bats (Diphylla ecaudata and Anoura caudifer) is of significance because these new hosts could represent an important virus reservoirs.
Resumo:
Background: It is believed that schistosomes evade complement-mediated killing by expressing regulatory proteins on their surface. Recently, six homologues of human CD59, an important inhibitor of the complement system membrane attack complex, were identified in the schistosome genome. Therefore, it is important to investigate whether these molecules could act as CD59-like complement inhibitors in schistosomes as part of an immune evasion strategy. Methodology/Principal Findings: Herein, we describe the molecular characterization of seven putative SmCD59-like genes and attempt to address the putative biological function of two isoforms. Superimposition analysis of the 3D structure of hCD59 and schistosome sequences revealed that they contain the three-fingered protein domain (TFPD). However, the conserved amino acid residues involved in complement recognition in mammals could not be identified. Real-time RT-PCR and Western blot analysis determined that most of these genes are up-regulated in the transition from free-living cercaria to adult worm stage. Immunolocalization experiments and tegument preparations confirm that at least some of the SmCD59-like proteins are surface-localized; however, significant expression was also detected in internal tissues of adult worms. Finally, the involvement of two SmCD59 proteins in complement inhibition was evaluated by three different approaches: (i) a hemolytic assay using recombinant soluble forms expressed in Pichia pastoris and E. coli; (ii) complement-resistance of CHO cells expressing the respective membrane-anchored proteins; and (iii) the complement killing of schistosomula after gene suppression by RNAi. Our data indicated that these proteins are not involved in the regulation of complement activation. Conclusions: Our results suggest that this group of proteins belongs to the TFPD superfamily. Their expression is associated to intra-host stages, present in the tegument surface, and also in intra-parasite tissues. Three distinct approaches using SmCD59 proteins to inhibit complement strongly suggested that these proteins are not complement inhibitors and their function in schistosomes remains to be determined.
Resumo:
The proportion of Plasmodium vivax-infected subjects that carry mature gametocytes, and thus are potentially infectious, remains poorly characterized in endemic settings. Here, we describe a quantitative reverse transcriptase (RI) real-time PCR (qRT-PCR) that targets transcripts of the mature gametocyte-specific pvs25 gene. We found mature gametocytes in 42 of 44 (95.4%) P. vivax infections diagnosed during an ongoing cohort study in northwestern Brazil. SYBR green qRT-PCR was more sensitive than a conventional RT-PCR that targets the same gene. Molecular detection of gametocytes failed, however, when dried bloodspots were used for RNA isolation and complementary DNA synthesis. Estimating the number of pvs25 gene transcripts allowed for examining the potential infectiousness of gametocyte carriers in a quantitative way. We found that most (61.9%) gametocyte carriers were either asymptomatic or had subpatent parasitemias and would have been missed by routine malaria control strategies. However, potentially undiagnosed gametocyte carriers usually had low-density infections and contributed a small fraction (up to 4%) to the overall gametocyte burden in the community. Further studies are required to determine the relative contribution to malaria transmission of long-lasting but low-density gametocytemias in asymptomatic carriers that are left undiagnosed and untreated. (C) 2012 Elsevier Inc. All rights reserved.
Resumo:
Suspicion of Brazilian spotted fever (BSF) should occur in endemic regions upon surveillance of the acute febrile icteric hemorrhagic syndrome (AFIHS). However, limitations associated with currently available laboratory tests pose a challenge to early diagnosis, especially in fatal cases. Two real-time PCR (qPCR) protocols were evaluated to diagnose BSF in 110 fatal AFIHS cases, collected in BSF-endemic regions in 2009-2010. Of these, 24 were positive and 86 negative by indirect immunofluorescence (IFA) assay (cutoff IgG and/or IgM >= 128). DNA from these samples was used in the qPCR protocols: one to detect Rickettsia spp. (Citrate synthase gene) and another to determine spotted fever group (SFG) Rickettsia species (OmpA gene). Of the 24 IFA-positive samples, 5 (21%) were positive for OmpA and 9 (38%) for citrate synthase. In the IFA-negative group (n = 86), OmpA and citrate synthase were positive in 23 (27%) and 27 (31%), respectively. These results showed that the 2 qPCR protocols were about twice as sensitive as the IFA test alone (93% concordance). In conclusion, qPCR is a sensitive method for the diagnosis of fatal BSF cases and should be considered for routine surveillance of AFIHS in places like Brazil, where spotted fever-related lethality is high and other endemic diseases like dengue and leptospirosis can mislead diagnosis. (C) 2012 Elsevier GmbH. All rights reserved.
Resumo:
The selection of reference genes used for data normalization to quantify gene expression by real-time PCR amplifications (qRT-PCR) is crucial for the accuracy of this technique. In spite of this, little information regarding such genes for qRT-PCR is available for gene expression analyses in pathogenic fungi. Thus, we investigated the suitability of eight candidate reference genes in isolates of the human dermatophyte Trichophyton rubrum subjected to several environmental challenges, such as drug exposure, interaction with human nail and skin, and heat stress. The stability of these genes was determined by geNorm, NormFinder and Best-Keeper programs. The gene with the most stable expression in the majority of the conditions tested was rpb2 (DNA-dependent RNA polymerase II), which was validated in three T. rubrum strains. Moreover, the combination of rpb2 and chs1 (chitin synthase) genes provided for the most reliable qRT-PCR data normalization in T. rubrum under a broad range of biological conditions. To the best of our knowledge this is the first report on the selection of reference genes for qRT-PCR data normalization in dermatophytes and the results of these studies should permit further analysis of gene expression under several experimental conditions, with improved accuracy and reliability.
Resumo:
Cryptosporidium parvum infection is very important with respect to public health, owing to foodborne and waterborne outbreaks and gastrointestinal illness in immunocompetent and immunocompromised persons. In cattle, infection with this species manifests either as a subclinical disease or with diarrheal illness, which occurs more often in the presence of other infectious agents than when alone. The aim of this study was to develop a real-time polymerase chain reaction (PCR) assay for the detection of C. parvum in calf fecal samples and to compare the results of this assay with those of the method routinely used for the diagnosis of Cryptosporidium spp., nested PCR targeting the 18S rRNA gene. Two hundred and nine fecal samples from calves ranging in age from 1 day to 6 months were examined using real-time PCR specific for the actin gene of C. parvum and by a nested PCR targeting the 18S rRNA gene of Cryptosporidium spp. Using real-time PCR detection, 73.2% (153 out of 209) of the samples were positive for C. parvum, while 56.5% (118 out of 209) of the samples were positive for Cryptosporidium spp. when the nested PCR amplification method was used for the detection. The analytical sensitivity of the real-time PCR was approximately one C. parvum oocyst. There was no significant nonspecific DNA amplification of any of the following species and genotype: Cryptosporidium andersoni, Cryptosporidium baileyi, Cryptosporidium bovis, Cryptosporidium canis, Cryptosporidium galli, Cryptosporidium ryanae, Cryptosporidium serpentis, or avian genotype II. Thus, we conclude that real-time PCR targeting the actin gene is a sensitive and specific method for the detection of C. parvum in calf fecal samples.